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Abstract: - The most difficult task is managing and digesting the massive amount of heterogeneous data created by IoT. 

It questioned the efficiency and computational storage capacity of today's infrastructure resources. Furthermore, because 

there is so much data, it becomes difficult to give the user enough information to make a decision. A technology known as 

Complex Event Processing (CEP) has been created to glean important insights from massive real-time data streams. The 

goal of this research is to create a system that can extract complicated events from large amounts of sensor data and only 

transmit those events to a cloud server. Global healthcare services have been expanding at an exponential rate because of the 

vast amount of data that clinical and medical organizations generate daily. Healthcare systems can use e-health services to 

meet the medical and assistive requirements of people. Edge technology is proven in this direction. Mixing the old classic 

concepts with the innovative we have proposed the Novel data analysis architecture for smart heart disease prediction. We 

have created the fuzzy-based inference system at the edges for the data analysis and used the resulting Complex Events at 

the end predictions. 

Keywords: CEP, Edge Computing, Smart Healthcare, Fuzzy logic, Inference Engine, CNN. 

 

I. INTRODUCTION  

    The Internet of Things (IoT) is a new network and information technology that can automatically monitor and 

manage a network of smart IoT devices [5]. IoT is pervasive in our environment and has gradually grown to be a 

significant part of our lives. Since its start, the Internet of Things market has experienced remarkable growth. 

exceptional forecasting abilities, cheap cost, and capacity to save time. Physical items are connected by the Internet 

of Things (IoT), and data can be sent and received over it. Sensors, machine learning, real-time analysis, embedded 

systems, and other technologies have all evolved into and out of the concept of the Internet of Things. 

A significant amount of data can be produced by the rapidly expanding number of smart devices, including 

wearables, actuators, and sensors [7] that are connected to the Internet of Things (IoT).  The inference of precise and 

practical conclusions from sensor data is challenging because of the rapid transmission of complex data. Due to a 

variety of variables, including deterioration, the machine's underlying dynamic structures change with time, making 

data processing one of the main problems. The enormous data set contains both organized and unstructured data, 

making it challenging to handle using traditional techniques. However, to obtain insightful knowledge that is useful 

for making strategic business decisions, business data analysis is a must. 

The study of Complex Event Processing (CEP) is a new field that analyzes data to find behaviors that are not 

visible to the human eye. It helps provide real-time information by reflecting more pertinent events from more sensors 

than just the one. For instance, if the heart rate surpasses the threshold limit within a specific time frame and the 

breathing rate rises, this may be identified as an arrhythmia event. 

Cloud computing offers information access from anywhere in the world, automated backups, and quick recovery 

for the healthcare sector. Like any new technology, cloud computing has its share of difficulties and obstacles; in 

particular, it presents issues when dealing with a lack of IT resources, bandwidth, and technical know-how. 

Concurrently, the cloud computing sector lacks legitimacy and support due to lax laws and regulations.   

Nevertheless, current complex event-processing systems are slow because they do not take redundancy and 

similarity in sensor data into consideration. This system tries to upload all of the fundamental data to the cloud, which 

makes it more complicated and slows down the upload process. Numerous methods exist in the literature that provides 

prediction solutions in different domains. For example, [3] uses rule-based machine learning strategies to detect 

Complex Event Processing (CEP). Moreover, earlier attempts have been made to use Esper to generate CEP, as 

demonstrated by Boubeta et al. [4] who combine technologies like Mule ESB and ESPER engine using the Xively 
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IoT platform. It does not, however, benefit from multi-cloud setups or offer the dynamic communication protocol 

required for event-driven architectures due to the centralized framework. 

This research is driven primarily by the necessity of excellent quality of service (QoS) at low latency for 

Healthcare Internet of Things (IoT) applications under time constraints. None of these objectives can be fulfilled by 

the cloud. Agile thinking and fast decisions are crucial because remote patients need to be closely watched and 

because a patient's physiological state can change over time. Latency is more erratic in unstable network conditions. 

Patient health data (PHD) is given slowly due to a significant amount of delay. As a result, the record is no longer 

credible, adequate, or valuable. The problem deteriorates when cascading-based data processing (such as signal 

processing of electroencephalogram (EEG) or electrocardiogram (ECG) signals) is required [16]. Milliseconds to 

microseconds could be the range of service delays in healthcare IoTs. warnings to doctors. Creating complicated 

events on a mobile device and delivering that data to the cloud rather than streams of big data from several sensors 

may assist in saving data transfer time and storage space. The suggested architecture with the CEP computing strategy 

for data analysis in healthcare applications addresses outstanding issues in this regard. We have suggested three 

components at the different levels i)Filtering algorithm at the device level to filter out the atomic events. ii)Inference 

Engine at the Edge level iii)A machine learning method is used to enhance the prediction of a patient's health (Cloud-

based CNN) 

II. LITERATURE REVIEW 

A.  Smart City Architecture in Healthcare 

The application of information and communication technologies to improve the accessibility and caliber of 

healthcare is known as "smart health." Because of their overload, the current healthcare systems are unable to satisfy 

the demands of an expanding population. In this way, smart health uses AI to give doctors better diagnostic support 

and to reach as many people as possible with access to healthcare. It is now possible to analyze this data in the cloud 

to make better healthcare decisions because mobile phones and health trackers are widely available [3][8]. These 

devices are capable of collecting information on people's health in real-time (ECGs, temperature, body oxygen 

saturation, and other biosensors), as well as monitoring daily activity and identifying anomalous motions using 

inertial sensors. Consequently, overall costs and the strain on medical facilities are decreased. As a result, total 

expenses and the stress on healthcare institutions are reduced. The smart healthcare architecture is worked in 4 phases, 

roughly.   

TABLE I: MAIN ARCHITECTURAL LAYERS IN  A MODERN HEALTHCARE DELIVERY SYSTEM 

Sr.NO Layer Name Comments 

01 Level 1: Obtaining Information This level stores raw data acquired from 

sensors for subsequent processing. CSV, 

tweets, database schemas, and text 

messages are just a few of the forms used 

to capture diverse data. 

02 Level 2: Data processing Semantic web technologies are used to 

summarise the information obtained at 

the data collection level before 

transmission, analysis, and fusion at 

subsequent levels. 

03 Level 3: Data integration and reasoning When the data has been classified, data 

may be supplemented using domain 

professionals and undefined reasoning. 

This strategy will aid in the acquisition of 

new information through uncertain 

reasoning, hence assisting in the 

development of an intelligent smart 

system. 
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04 Level 4: Device control and alerts Numerous online applications may make 

use of Level 3 data to establish intelligent 

working conditions. The derived data can 

be utilized for a variety of purposes, 

including input/output, messages, alerts, 

and warnings.  

 

B.   Challenges in Smart City Healthcare Application  

Designers need to know what people expect and how smart healthcare systems are used in the real world, to 

accomplish the aims and solve the issues of smart healthcare. Smart City IoT system implementations must deal 

with concerns such as security and privacy, smart sensors, networking, and big data analytics. In addition to that 

huge data collection and Big data itself pose Volume as the major Challenge and this is affecting real-time analysis 

which is a basic need nowadays. 

The processing of measured data by sensors on sensor devices or devices next to sensors, as opposed to cloud 

servers or distant healthcare facilities, is known as fog computing [14] [17]. Thus, an enhanced fog computing method 

can be thought of as a low-latency alert or diagnosis system. Unlike cloud frameworks, which are narrowly focused, 

fog computing enables an organization to leverage local computational resources at the organization level in addition 

to cloud administrations at the organization level. The fog nodes also assist in saving energy by limiting long-distance 

transmissions and selecting neighbors based on a time restriction calculation.   

C. ML and AI in IoT healthcare 

When integrated, artificial intelligence and the Internet of Things (IoT) should improve operational efficiency 

in the healthcare industry.  Modern healthcare systems are heavily dependent on artificial intelligence (AI) and 

machine learning (ML), which have a significant impact on data management and provide accurate, low-latency 

results. AI has greatly impacted the diagnosis and forecasting of problems that call for more sophisticated clinical 

testing, and machine learning (ML) can help with ongoing problem detection and personalized healthcare. The 

diagnosis of illnesses and health monitoring systems have been significantly impacted by the Internet of Things 

(IoT). Below is a summary of a few of the survey items 
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TABLE 2: SURVEY SUMMARY ON AI AND ML LITERATURE IN IOT       HEALTHCARE 

 

 

D. Complex Event Generation 

IoT CEP solution (IHS) is proposed by Dhillonx et al. [68] using a mobile edge device and a cloud-based IoT 

Hospital Server. Wearable health sensors (WHS), a mobile device, and a distant IoT Hospital Server (HIS) are the 

main components of the system. WHS may communicate sensor data through Bluetooth or wifi to a smartphone, 

which connects to the IHS over a WiFi network. The edge uses the MQTT protocol to transfer complex events to 

the hospital server. Like security surveillance and healthcare systems in real-time environments. Numerous 

particular problems are presented by cloud computing. Regarding IoT in healthcare, security, and privacy are 

important considerations.  The primary issue here is that data processing is commensurate with the amount of data 

created and moved across the network. Therefore, the only way to lessen this would be to consider reducing the data 

resources. So subsequent routing of data over the web will be avoided. So here, we found the research gap, and then 

we developed the innovative rule-based complex event-generated engine on edge devices. We did the comparative 

analysis for data reduction with the help of various Machine learning algorithms. We found that time and space 

complexity is the main problem with these resource-constrained edge devices. And then come up with a Complex 

event generation module. 

 

III. RESEARCH PROBLEM AND METHODOLOGIES 

A.  Identifying the GAP : 

The vast amount of data created by IoT sensors leads to a great deal of data traffic, which clogs the network and 

causes delays. End users are not provided with enough useful healthcare data due to increased round-trip delays 

resulting from huge data transfers and high hop counts between IoT and cloud servers. network congestion. 

Applications in healthcare that need to respond quickly require real-time data. The low latency needs of end users 

and healthcare IoT devices cannot be satisfied by traditional cloud servers. Therefore, for IoT data transfer, it is 

necessary to decrease computation latency, network latency, and communication delay. Basically when we are 

Study Objectives Methodology 

Azimi et al. [58] Classification of  

ECG signal anomalies  

Distributed implementation 

of a deep learning algorithm 

and a partitioned linear 

machine learning technique 

(linear SVM)  

Kaur and Jasuja [59] Pulse rate and  

body  

temperature monitoring  

Remote health monitoring 

with the use of the Bluemix 

cloud. 

Magaña Espinoza et al. 

[60] 

Detection  

and notification  

of specialists  

when individuals fall  

to the ground; event-based monitoring 

 to report  

tachycardia and bradycardia  

Encryption technique for 

communication between 

wireless sensors. For simple 

access and push notifications 

of anomalous occurrences, a 

mobile application and a web 

page are available. 

Orha  

and Oniga [61] 

Automatic recording of 

 the human body's  

major physiological characteristics with  

the use of an  

Arduino microcontroller. 

Data is transferred to a 

personal computer for 

processing.  

Yakut et 

 

 al. [62] 

ECG signal  

measurement through  

an E-Health  

Sensor Platform  

coupled to a Raspberry  

Pi. 

The Raspberry Pi writes data 

to a text file that may be 

processed further in the 

Matlab computer 

environment. 
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working with the Smart city applications and talking about Fog architecture. However, privacy is viewed as the main 

objective of security; it involves enforcing specific rules and principles that limit the amount of data that can be 

accessed, collected, or provided to a second or third party about an individual or organization. Data privacy and 

ownership are more directly related to each other than to data security. While using information systems, people and 

organizations may claim a moral right to privacy; however, computer security is not a moral right in and of itself. 

Generally, when we are transferring data to edge devices from end users we are using a LAN-like protocol where 

communication delay is considered negligible.  Also while modeling the network for getting performance evaluation 

parameters Unprocessed data in smart applications is forwarded to cloud servers via the internet for processing, so 

communication delay from edge devices to cloud servers needs to be considered.  

B. Problem Statement     

We need an effective framework to address the time and space complexity problems with the data provided by 

IoT devices. As a result of this   issue statement that follows has been developed: 

In smart city healthcare, where complex event generation has occurred on edge devices, to design a novel 

computing approach for data analysis. To analyze the data and gain real-time insights to intensely anticipate patient 

health (arrhythmia). Alerts are generated by the system and sent to the doctor's registered mobile number.  

The problem statement is broken down into the following subproblems: 

• Creating a hardware interface for measuring physiological characteristics. 

• Create a model for data compression. 

• Creating a better CEP generation model for cloud-based data transfer in Internet of Things-based smart city 

applications. 

Based on the above We come up with the following objectives: 

1. To design a data analysis block on edges of cloud-based smart healthcare services incorporating domain-

specific Complex events generated with real-time patient-cited health sensor values. This rule-based Complex event 

generation reduces the vast amount of data generated and transferred from IoT devices over the cloud. 

2. To devise an efficient and novel hybrid data analysis framework on edges of smart city healthcare applications, 

which will correlate the atomic real-time events for generating Complex events, which will be used for further 

analysis in the cloud for disease severity prediction. To perform experimental research with a simulated soft sensor-

generated dataset and calculate the computational complexity of proposed/developed frameworks on throughput, 

CPU utilization, and RAM required with increased rules and compare the values. 

3. To devise an efficient and novel architectural framework and fine-tuned stacked data analysis approaches for 

smart healthcare applications, which can further be integrated with any smart city application.  

The first and third are already explained in our previous publications so we are focusing more on the second one. 

3. Mathematical Model  

When we talk about fog computing architectures for Internet of Things smart city applications, we make the 

following assumptions:  

1. The network's terminal nodes (TNs), which include cell phones and body sensors, can communicate their precise 

geographic location. This is also applied to the modeling of events. 

2. The fog computing tier, which is made up of "intelligent" devices that can compute, process, and store data in 

addition to forwarding and routing data packets to the cloud layer, is where edge devices like routers and data collector 

nodes are located. 

3. Depending on what's needed, the networking devices in the fog computing layer can divide up the network, 

compute, and storage load among themselves. 

4. All the communication network layer delays are handled by standard protocols. 

The tier nearest to the ground in our smart healthcare application creates a network of several body sensor-

equipped, Internet-connected end devices, also known as IoT. The edge gateways located at the margins of the fog 

tier receive the data transmitted by these sensors, also referred to as the Terminal nodes. In fog computing, not every 

data packet is routed to the main cloud computing module for processing, in contrast to the typical cloud architecture. 

Rather, the fog layer itself is used to perform all real-time analysis and latency-sensitive applications. 

This layer's fog computing devices have limited semi-permanent storage, which enables them to temporarily store 

received data for analysis before sending the necessary feedback back to the source devices. 

Now with the focus on our third objective: 

Two factors primarily affect the end-to-end delay in the results when we attempt to model the smart healthcare 

application. Traditionally, the following factors have a major impact on data processing delay or computational 
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overhead in smart city healthcare applications: 1. Communication latency for data flow from devices at the edge to a 

cloud server. 2. Machine learning computational overhead at cloud server network protocols, the speed, and the kind 

of data we are sending are among the things that we take for granted. So, there will be an end-to-end delay caused by 

these factors; nevertheless, the analytical engine we are developing primarily aims to minimize the events data 

transfer to and from the cloud. The problem can be represented graphically as follows (Ref. Fig.1.) 

 
Fig 1 Diagrammatically  Representation of Fog architecture(Curtsy: Authors Previous Publication) 

We can model  graphically the above network as follows (Ref. Fig2.) 

 
Fig 2. Graphical representation for Fog network(Curtsy: Authors Previous Publication) 

 

With the above-said architecture, the performance metrics of the  Smart healthcare applications can be modeled 

or benchmarked on the following criteria: 

 Service latency: The total of the transmission and processing latency for a request is the service latency, which 

is essentially the response time for a request sent by an application instance operating within an IoT device. We 

presume that there is very little latency due to high bandwidth communication between the cloud server and several 

edge devices. 

We assume that high-bandwidth channels are used for communication between various FIs at tier 2 and across 

various cloud data centers at tier 3, resulting in very little latency. Furthermore, the TNs' communication latency is 

considered negligible.  

𝐷Edge = min∑mi=1  (1/ Vzi) * (aixi2)  Where xi is a function of the amount of data generated at the edge layer.  

delay in the cloud computing layer includes processing delay plus delay in transmitting data from the fog layer to 

the Cloud server layer.  

For the cloud server j if the amount of data it needs to deal with is yj and the computing capability is Vj its 

computational delay can be expressed as: Dj = yj / vj (j= 1, 2…. n). So for n cloud servers with total data to process 

is Y we can have  

The system delay in Smart  healthcare applications with Fog architecture mainly consists of  

Delay System   = D Edge    +   D Cloud   +  D edge-cloud  Where  D Edge    =  Computational Delay at Edges, D 

Cloud   =  Computational Delay at cloud, and  D edge-cloud  = Communication Delay From edge to cloud. 

So our Objective function parameters mainly focus on the following:  1. Data amount transferred from  Terminal 

Devices to Edge  2. Data amount transferred from edge to cloud 3. Edge layer data analytics strategies and algorithms 

that have better Computational performance.  

With this as the GAP analysis and Objective function, our Research Objectives are as follows: 

• To reduce transmission data packets by introducing suitable methodology on the edge devices. 

•  To do the performance analysis of the new suggested algorithm As it will be designed at the fog layer which 

has limited resources. 

• To devise an efficient and novel architectural framework and fine-tuned stacked data analysis approaches for 

smart healthcare applications which further be integrated with any smart city application 
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B. Methodologies 

We have suggested the use of Complex Event Processing algorithms on the Edge devices to reduce the amount 

of data transferred from  Edge devices to the cloud server. 

Proposed System:   We have proposed the following components at different layers along with standard fog 

architecture in the Smart healthcare application. To discuss the feasibility and analyze the different design 

parameters we have used the prototyping approach. As a case study, we describe a unique health analysis technique 

for heart failure prediction that tackles the performance challenge of evaluating and processing the massive data 

supplied by sensors such as ECG signal values, SPO2, and temperature. It is based on the usage of Complex Event 

Processing (CEP) technique mixed with statistical methodologies. A CEP engine analyses incoming health data using 

threshold-based rules.  

 

 
 

Fig 3. Proposed architectural Design for smart healthcare 

 

In Objective One, we have explained how our Complex event processor can be used in the Data analytics block 

on the Gateway of the Edge computing IoT healthcare applications. CEP offers abstractions (event processing logic) 

for event operations that are distinct from the application logic (event producers and event consumers).  This can help 

to cut development and maintenance costs. Event processing logic is frequently written in domain-specific languages 

known as event processing languages (EPLs). 

 Coming again to our hypothesis, the Computational cost of the data analytics block, i.e. CEP in our case is 

essential. So, we should focus on the design issues of the Complex event Processor or suggest a Novel approach to 

design the Complex event Processor so that the overall latency of our Smart Healthcare Application will be reduced.  

 Recommended algorithms at the terminal devices: The diverse environment of smart city applications is the 

primary source of worry while gathering input. As an illustration, we have recorded ECG signals, SpO2, and body 

temperature using a thermometer. We have proposed a generic Event model that may be used for any kind of sensor. 

When the input model is being run on terminal devices with sensors connected, the input port will receive values 

from each sensor. Since each sensor has a standard Device ID and location, the event object will have the format 

shown below: 

e = (ID, DeviceID, DeviceType, Location, StartTime, EndTime, KeyValueList) where, 

ID: Event No, Device ID:  1,2,3,……..I ( For I different sensors ), Location: Geographical location, Start time: 

time stamp for start of reading input port, End time: time stamp for start of reading input port, Key values list: Input 

port data (It depends on the Sensor ) This standard Object format for storing event format helped us to reduce the 

heterogeneity. Further, this Object oriented event data is used for further analysis. 

Event Collection system: The data collector node is where this Block is proposed. Now, it depends on the WSN 

topologies you are using and your fundamental network architecture. Sometimes it is present at your router, access 

point, or terminal device (such as a mobile phone or Fit Band), or it may be a separate data collector node. 

Preprocessing is similar to this when it comes to input data. It makes use of event filtering, for which common 

methods like thresholding or windowing can be applied. Once more, we have a variety of events here. 

 1. Simple atomic events or 2. Composite events.  

We have created a hierarchical event model in the suggested event model that aligns with our goals and only 

pushes important events that are service- and application-oriented. Experts in the field recommend the business 

guidelines here. In our instance, we have spoken with the on-call cardiologist to obtain the appropriate protocols for 

noteworthy occurrences. 

Our Algorithms for the first and third objects have already been published in previous publications. Here we are 

discussing the second component algorithm 
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Fig 4: Complex Event Processor Model 

This Fuzzy-based Complex event processor(Ref. Fig 4) mainly consists of the above-shown blocks. We are 

pipelining the output of our simple event generation block as input to our complex event generator. Fuzzification is 

mainly responsible for converting simple input events to fuzzy input data sets. The inference engine is primarily using 

this fuzzy input dataset. For the inference engine, we are using association rules. The knowledge base is taken and 

confirmed by the domain experts. The defuzzification block will give us the action selected as the result of inference 

and will convert to the corresponding output dataset. The output will be a Complex event generated. 

 Mainly our Complex Event Processor  consists of the following modules : 

 Inference Engine  2. Simple event Processing (Fuzzification ) 3. Complex event Generator 

(Defuzzification ) 4. Inference Knowledge Base or Rule Engine  

Input Simple Events : 

Data Resource: From our Pre-processing Block. 

Event Format: E1 (1, l, t, Value): Distorted ECG 

                         E2( 2,l,t,Value) :  SPO2 below 95 

                         E3( 3,l,t,value) temperature  above 96.6 

In our pre-processing unit we are collecting Raw events (explained in Eq 4.3.1.1 )  and with our pre-processing 

analyzer converting them into Simple events as shown in the above format. It has 4 parameters  

1: Sensor No ( 1. ECG,2 SPo2, and 3 Te 

2: Location  

3: Timestamp  

4. Value of sensor 

The example is given below : 

{  E2( 2, Icu bed 1,10.00am, 85) 

    E3(3,icu bed 1,10.00am,34) 

    E1(1,Icu bed 1, 10.00am, 389404297 

  

Total We can say about the dataset :                               

 Dataset Resource: Collected Sensor values.                      

 Number of Attributes : 3 (ECG, SPo2. Temp) 

 Sampling rate : ECG: 300Hz for 3 mins on 10 patients 

 SPo2: 30 mins We have collected a total of 169 values  

  Temp:  1 hr. We have a total of 169 values  

 Dataset Characteristics: Real-time sensor data ( We have used the generator of time data for the demonstration 

but it is real-time data) 

  Output data will be a complex event. The format for this output event will be as shown below : 

CE1:     fix OPD appointment and suggest lab testing. 

CE2: Get admitted to patient to ICU in emergency suggest lab test 

CE3:  Push ECG signals, suggest lab testing, and  admit the patient to the cardiology dept 

CE4: admit the patient immediately, and do lab testing. 

Here we are using a heart arrhythmia-type detection web service for demonstration purposes so only checking for 

the  CE3 generation rules and generating those Complex events. The output complex events have having following 

format  

CE3 (Patient ID, Event ID, Timestamp, ECG signal values ) 

Here  ECG value we are forwarding is what we got for that time stamp. This will be consumed by our web service 

which uses CNN to detect the type and severity of heart disease. 

Complex Event Processing Systems CEP:  In comparison to a simple event, it represents more relevant events 

from several sensors, which aids in the provision of real-time information. Context-awareness is one of the key 

characteristics of any smart-city application since, as we all know, they are ubiquitous. We have recommended a 

complex event processor—a crucial component—for additional data reductions. The system looks for anomalies in 
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the patient's health status using complex event processing (CEP). The fuzzy-based technique is used to generate 

complex events (CE). We have incorporated a third novelty into our component design for the edge gadget. Real-

time alerts are generated as complex events, and they are sent to the cloud together with ECG data so that the model 

can be further trained. 

 

  
Fig 5 Inference engine at the heart of the CEP 

Fuzzy-based approach for the design of CEP: As we can see in the smart-healthcare problem statement   ECG 

and Spo2, Temperature are analyzed and a thresholding technique is used for filtering and creating the critical events, 

data transfer in bytes is considerably reduced. This we can do offline also with low internet connectivity. But still, 

the set of values (sensor reading) is sharp boundary values. With a fuzzy rule base here we are allowing smooth 

boundaries and then applying a rule-based inference engine with simple and /or operation to generate new complex 

events which will carry only necessary information used for cloud-based analysis. This complex event is pushed 

further. The fuzzy set concept is applied to atomic events which we are getting as the output from our first algorithm 

and as per rule complex event will be generated. In this fuzzy representation, this limitation of a sharp boundary set 

is further analyzed by allowing membership in a set to be a matter of degree. the degree of membership in a set is 

expressed by a number between 0 and 1 ; 0 means entirely not in the set, and 1 means completely in the set.in between 

means partially in the set. From Fig 6 It is clear that I put to our block Critical events. The fuzzification functions we 

are using are triangular and trapezoidal.  Following is the CEP  Algorithm : 

Input data set : SE(d,l,t,value)// Where d=(1,2,3,4,5), l = location(bedno),t=time stamp, (Atomic events after 

filtration) 

Output dataset : EE1,EE2,………… 

1. If SE.d==1 then( call fuzzification function for ECG) or 

2. If SE.d==2 then ( call fuzzification function for SPo2) or 

3. If SE.d==3  then ( call fuzzification function for BT) or 

4. For all events with the same l and t Search for patterns in Ruleset 

5. Generate complex events when Rule Matches 

        6.  Push Events for the next analysis to Cloud 

 Performance of  Complex Event Processor on the Edge Devices 

Input: Events generated from our first Simple event model : 

E1 (1, l, t, Value): Distorted ECG 

E2( 2,l,t,Value) :  SPO2 below 95 

E3( 3,l,t,value) temperature  above 96.6 

 Output : Complex Events  CE1(Event id,Patient id , location , Timestamp ,  SpO2 values, action 1 ) 

CE2( Event id,Patient id , location , Timestamp ,  SpO2 values, action 2) 

Process: A fuzzy inference system (FIS) maps inputs (in our use instance, sensor data) using fuzzy set theory. We are 

getting SPo2, ECG, and Temp in the form of Simple Events generated) to outputs (Complex events we want to 

generate CE1, CE2, CE3, CE4). This mechanism involves 

the following steps: (1) Definition of the fuzzy sets and fuzzification of each input, (2) Definition of fuzzy if-then 

rules, (3) Aggregation of the consequent by applying the rules, and (4) Defuzzification of the output. 

Fuzzification Stage: 

The parameters (inputs) were modeled as linguistic variables before fuzzification. Heart rate was denoted as HR, 

body temperature as BT, and oxygen saturation level as SP. The linguistic variable CE is also used to indicate the 

output parameter. The representation of the activity was ACT.  
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Inputs with fuzziness: This procedure, which serves as the initial phase, uses membership functions to characterize 

the inputs and establish the degree to which each is a member of a specific fuzzy set.  

Fuzzy sets and membership functions' input variables: The list includes the possible ranges for each input value and 

the implications (clinical status). 

Fuzzy SpO2 set: Per experts' guidance, we use three fuzzy sets for this input field (NSP, Hypoxia2, and Hypoxia3). 

The membership requirement for this fuzziest is the Trapezoidal function. 

Table 4: SpO2 Fuzzy set and membership function 

 

 

 
ECG Fuzzy input set: We employ three fuzzy sets for this input field (ECG less distorted, ECG very distorted, 

and ECG Normal) per the experts' recommendations. The PR, QRS, and ST values in the ECG waveform we plotted 

on the pre-processing module will determine this.  

Table 5:  ECG Fuzzy set and membership function 

 
Temperature Fuzzy input set: Per experts' recommendations, we use three fuzzy sets for this input file (Normal, 

Moderate, and Fever). 

Fuzzy sets and membership functions as output variables: The Complex Event created is referred to by the output 

variable "clinical status". The linguistic term "CE" is used in this system to indicate the output variable. 

Rules Fuzzy 

sets Output 

Clinical 

status 

Action performed 

1.IF ecg IS 

less_distorted 

AND spo2 IS 

hypoxia2 

THEN result 

IS 

CE1 Moderately 

bad  

Push ECG and SPo2 Events with 

our event format to the corresponding 

web service (admit patient immediately, 

do lab testing.) 

IF ecg IS 

very_distorted 

AND spo2 IS 

hypoxia2 

THEN 

CE2 Urgent 

Attention 

required 

Push ECG and SPo2 Events with 

our event format to the corresponding 

web service (In our case, our service is 

what we are demonstrating for heart 

disease severity checking) 

IF ecg IS 

very_distorted 

AND spo2 IS 

hypoxia3 

CE3 Emergency   

Push ECG and SPo2 Events with 

our event format to corresponding web 

service(Can be called ambulance and 

get admitted to Emergency) 

IF ecg IS 

very_distorted 

OR spo2 IS 

hypoxia3 

CE4 Emergency Push ECG and SPo2 Events with 

our event format to the corresponding 

web service(It may be calling specialist) 
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 The rules for the Complex event generation for our prototype we have taken are as follows (Ref: table 6) 

The fuzzy logic engine's "clinical status" output variable has four fuzzy sets in our study. These sets' membership 

functions are triangular. The fuzzy set details are shown in Table 5. Fuzzification Method: Fuzzy Values can't be 

clearly distinguished from one another. For instance, the patient is experiencing hypoxia. The SPo2 in this statement, 

denoted by the letter C, could be 93, 85, or 35, which can be anything in a given range and cannot be distinguished 

from each other in the statement. Fuzzy sets represent these variables because they cannot take crisp values in any 

other way. 

 

 

 
Fig:2 Membership function for ECG and SPo2 and Output 

 

A triangular MF is specified by three parameters {a, b, c} as follows: 

 
By using min and max, we have an alternative expression for the preceding equation: 

 
Membership function for ECG and SPo2 and Output, when we have 90 to 100 as SPo2, it is treated as Normal, 

and from 85 to 90 is treated as hypoxia2  and  0 to 80 as hypoxia3. Similarly, we are considering the ECG's PR and 

RR interval ranges. ["RRInterval"]>=0.6  

    and data["RRInterval"]<=1.2) and (data["PRinterval"]>=0.05 and data["PRinterval"]<=0.2):   

After the fuzzification with these ranges, we decided on the four rules for the demonstration purpose with 

discussion with physicians. 

Defuzzification Mathematical Model: The weighted average approach, centroid method, and maximum 

membership principle are the three primary techniques for defuzzification. 

We have used the center of gravity Defuzzification function. A defuzzification technique in which the coordinates 

of the level’s section contained between the graph of the membership function involved and the OX axis are 

transferred to corresponding levels. 

IV   RESULTS AND EXPERIMENTATION 

We have used simple and/or functions from the CEP operators for our rule base. 

We aim to design a complex event generator using the fuzzy rule-based inference engine on edges in smart 

healthcare applications and optimize it on Complex event generation time. We have suggested the Architectural 

design and algorithm for the Complex Event Generator. Now, as stated in the objective, we have to analyze this 

Design on the following parameters : 

1. The time complexity for the Complex event generation. 

2. CPU usage or processor time required. 
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3.  RAM usage for CEP Engine. 

 
Fig 4 Complex Event Generator Performance Analysis Model 

The success of CEP is crucial for real-time IoT monitoring.  

Fig. 4 depicts the experimental configuration of the CEP system. 

Specify M, T, and Tmax. The time interval is T. The largest time window is Tmax. To send to the CEP system, 

M simple events must be generated in each T period. The actual system is called CEP. It receives sensing input and 

goes through a series of steps to produce complicated events. The CEP system has a few parameters. The complex 

event definition number, N, and the largest temporal frame, Tmax, are input parameters. The processing time Tc is 

calculated using the output parameters T1 and TM. The system time at which the first event in a T-minute period was 

received is T1. The computing method of Tc is Formula (1) as follows. In 1, i is the number of CEP system runs. 

Tc = 1/n ∑ (𝑇𝑀 − 𝑇1)𝑛
𝑖=5   ---------------(1) 

To get the time and space complexity, we run this module separately before integrating this as a middleware 

architectural component.  The experiments are carried out on an Intel Core i5-6300HQ CPU 2.30GHz PC, with 8GB 

of RAM running on Windows 10.  

1) THE PROCESSING TIME PERFORMANCE The number of complex event definitions N is :1, 2, 5, 10, 

20, the input simple event flow M is increased from 1 × 104 to 10 × 104, and the processing time Tc is 

shown in Figure 6. The experimental results show that:(1) The processing time Tc increases as the number 

of complex event definitions N increases. 

2) ) THE RAM AND CPU USAGE: We assess CEP's use of computational resources. Figure 5.10 displays the 

CPU use of the CEP for cases where N = 20 and M = 200 ×104. The H/W Specifications are Intel i5 PC 

with 8GB RAM. If the required throughput is thousands levels, such as 1000–9000 events/second, or tens 

of thousands level but less than 3 ×104 events/second, it is adequate to sustain the CEP system's operation. 

 

 
Fig.3 CEP Performance Analysis Graphs 

The processing time Tc increases as the number of complex event definitions N increases for all of the two kinds 

of complex events. Elapsed time is the amount of time that passes from the start of an event to its finish.  Here We 

have M which is Raw Events and the last complex event we received. 

A complex event (CE2) is generated if every sensor value is high (according to the rule set). These events are 

transmitted to the cloud and Critical alarms are given to the doctor or family members when heart failure is predicted 

using machine learning techniques on the cloud with CNN. The cloud is being used to generate the analytics reports. 

For the patients for whom a CE2 has been generated, we have uploaded the entire data stream to the cloud. After 

compression, the data is kept in the cloud. We utilized a typical compressor algorithm, which is beyond the parameters 

of the problem statement. 
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Fig7; -Graphical representation of the Patient’s Data files transfer On the cloud server (AWS) 

The overall accuracy obtained for the Classification is 98.76% using CNN. 

V. CONCLUSION 

We started our journey by developing an effective algorithm on the edges of intelligent healthcare applications, 

mainly focused on the total end-to-end data transfer on the cloud. The main motive is to create an algorithm that will 

take all due advantages of the edge computing architecture and suit the agile framework. As we know that Old is 

Gold and simplicity is always better, we focused on the Fuzzy inference system and used that theory in our algorithm 

development. This acts smartly and looks at CPU and RAM utilization to help us improve the algorithmic 

performance parameters. This thesis defined the problem of massive healthcare data storage in IoT frameworks. With 

vast amounts of IoT data, manually storing and archiving health information becomes increasingly difficult.  It's 

difficult to locate a patient's data in a huge record room containing a high quantity of medical files if all data is stored 

manually or on paper. It takes a long time and a lot of effort to locate a patient's medical records from the cloud. 

Patients medical information is critical for further decision-making, and a lack of access to medical information may 

jeopardize the delivery of the best possible care to patients. Storing patient records electronically simplifies the 

exchange and availability of information for healthcare processes, increasing the productivity of any patient care 

system that takes a central position and provides easy access and usage. 
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