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Abstract: - Renewable energy sources offer environmental benefits and a more consistent supply, making them essential for integrating into 

energy fusions. Network operators have challenges with intermittent and stochastic power sources like wind power owing to their fluctuating 

production. This study presents an innovative method for predicting wind turbine power output, from any location in a vast region with high 

efficiency. To ensure a representative sample of geographical locations, the research region is divided into a grid and sampled accordingly. 

The ideal production times for each sub-area are discovered and utilized to anticipate electricity output. It uses the LSTM model to predict 

meteorological data and the linear model to approximate wind turbine power curves. The sub-area showed one-day wind speed, direction, and 

power projections clustering scores. Wind and directional predictions yielded RMSE (0.35m\sec, 7.9rad) and R2 (94%, 71%) scores. 

Keywords: LSTM, RMSE, Energy Fusions, Turbine Power, wind power. 

I. INTRODUCTION 

Conventional energy depletion has spurred interest in renewable energy. According to the 2022 IEA assessment, 

gas, uranium, oil, and coal, will expire in 55, 65, 115, and 100 years. Respectively, which are immeasurable on a 

social measure. Meanwhile, the IEA predicts a 40% increase in global energy consumption by 2035 owing to 

industrialization and development programs. This means that nations with surplus output and self-usage will not be 

able to supply their needs using traditional generators. Exporting nations will struggle, raising energy import prices 

and decreasing energy imports in low-production countries. These conventional resources are less equally 

distributed than renewable energy sources, and climate change rules encourage to use of green energy. 

 In light of the unequal distribution of conventional resources, the development of these renewable forms of energy 

is necessary in the battle against climate change. The cultivation of already existent resources and the use of those 

resources need the formulation of new laws. The development of renewable energy sources and improvements in 

energy efficiency are becoming more important solutions to the difficulties that are caused by the production of 

energy. These topics include concerns about the economy, the environment, and the material world. As the Earth 

orbits the sun, the solar source is intermittent and fluctuates randomly, the available output power of the PV 

generator is therefore randomized. Like the wind, the wind turbines' output power changes randomly, but owing to 

a minimum beginning speed, it also varies intermittently. In conclusion, wind and PV generators' performance and 

power vary with time and place. 

There are several approaches discussed here that may be used to deal with the sporadic and random unpredictability 

of these sources. To maintain a nearly constant output, it is possible to utilize several different generators, each of 

which produces something that complements the others. Another solution to the problem of intermittency is the use 

of energy storage, however, the production, operation, and recycling of this solution are expensive. In the context 

of globalization, interconnected countries have the potential to engage in the exchange of products and promote 

consumption when their production levels are high.  Forecasting is considered to be the most suitable approach for 

addressing random fluctuations in output power due to its use of artificial intelligence techniques, which provide a 

comprehensive assessment of future power development. 
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In certain geographically feasible areas, solar and wind energy resources can be developed and utilized in the coming 

years. When developing a suitable and adaptive forecast to combine these variable resources, it is necessary to take 

into account both the approach, that is being utilized and the surrounding environment. In addition, the findings of 

this research have led to the development of LSTM time series forecasting and wind turbine power curve 

approximation models. These models were used to forecast the speed and direction of the wind for 24 hrs, and the 

combination of the power curves of wind turbines and a forecasting model is known as LSTM. The results of this 

study will help to determine areas throughout a country that have the potential to house wind turbines and forecast 

how wind turbines will behave during various seasons and at different times of the year. In this work, a technique 

is described that can be used to estimate and determine the optimal production times of a wind source positioned at 

any place in a big geographical region. The results of the study are presented in the third portion, which is followed 

by a summary and conclusion in the fourth section. 

II. METHODOLOGY 

The wind turbines' behavior is hard to anticipate because of the influence that the elements have, like Satellites, 

meteorological stations, and numerical models measure geographic wind speeds.  There are a wide variety of wind 

turbines, and the quantity of power they create is directly proportional to the wind speed at the location where the 

turbine is located. The kinetic energy of the wind is converted into mechanical and electrical energy by the wind 

turbine, which then results in the production of electricity. The output is presented in the form of a curve, which 

may be construed either as a generator or as a model, depending on the context. The great majority of wind turbines 

are controlled using a system known as the Pallabazzer. 

2.1 WIND POWER VOLATILITY DUE TO WEATHER 

Weather conditions because wind turbine output power to vary randomly. The study flowchart in Fig. 1 shows how 

to identify and manipulate key influencing factors to control variability. Wind turbines have multiple models, and 

their power output varies with wind speed. The output is displayed as a curve, which may represent a generator or 

a model. Most wind turbines operate using the Pallabazzer model. This involves using mechanical power on the 

wind turbine shaft, which is determined by factors such as wind speed, blade area, and power coefficient. To 

calculate the electrical power output of wind speed, the wind turbine, and direction are used, to determine optimal 

energy extraction by orienting the wind turbine blades. Wind power provides many environmental advantages, 

however, intermittency and possible effects on animals and landscapes are issues. Technology, site selection, and 

environmental management solve these problems. Wind power may reduce energy production and consumption's 

environmental effects when combined with other clean energy sources and a reliable energy storage system. 

 

Figure 1 Flowchart for Proposed Research Method 
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2.2 GRIDDING AND SAMPLING 

Geographic wind speeds are analysed through gridding and sampling via weather stations, satellites, and numerical 

weather models. This data is formatted for analysis, visualization, and modelling using gridding and sampling. There 

are many ways to generate wind speed data: For analysis or display, geographical wind speed data sampling requires 

picking data points or subsets of the gridded data. To concentrate on particular locations, periods, or characteristics 

in wind speed data, sampling methods are helpful Standard sampling methods are used in climate research, 

renewable energy planning, and weather forecasting 

2.3 DELINEATION 

In wind power, delineation refers to specifying sub-areas or characteristics. Professionals aim to enhance these vital 

areas in the complex field. Researchers, engineers, and politicians can tackle wind power sector challenges by 

dividing it into sub-areas. The data set Data Obtained from The Geostationary Operational Environmental Satellite 

(GOES) Operated by The NOAA NOAA uses satellites called GOES to monitor the weather, paying special 

attention to wind patterns. Data collected by GOES may be used to both monitor and forecast the wind speed. 

Database:  GOES NASA POWER LARC 

 Frequency of the Data:1 hour 

 Kinds of Data: V60M  

V60M: Ground Wind speed at 60M 

D500M: Ground Wind Direction at 60M 

Period:  from Jan 1, 2013 to Dec 31, 2022 

 

Figure 2 GRID AND SAMPLE MAP 

2.4 PRE-PROCESSING SAMPLE DATA 

Data, including the speed and direction of the wind, are gathered from NASA meteorologists for every sample. To 

get precise information, the data must be pre-processed once the gridding and sampling steps have been finished. 

This incorporates a wide variety of processing techniques. 

2.5 DETECTING AND ELIMINATING OUTLIERS 

The term abnormality refers to data points that deviate significantly from the mean, suggesting a deterministic 

process is influencing the data. Measurement errors or rare occurrences like fires or weather might be the root cause 

of these anomalies. Outlier detection is used in many applications. Representative and observable outliers are the 

simplest to spot in a dataset. This reveals exceptionally far-off numbers. Box plots show one-variable distributions. 

Median, lower, and higher quartiles form these graphs. Any extreme number that exceeds I times the interquartile 
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range is an outlier. Mean, standard deviation, maximum, and minimum computations usually use I=1.5. Statistics 

provide speedy detection of data irregularities. 

2.6 NEW DATASET VARIABLES 

Improve model learning by adding variables to the data set. Meteorological data (wind speed, irradiance, 

temperature) need periodicity for analysis and forecasting. This research determines the series' highest frequencies 

using a quick Fourier transform. By methods 1 and 2 add variables by using this frequency. 

𝑋𝑠𝑖𝑛 = SIN(𝑇 ∗ (
2∗𝜋

𝑇
)) 

𝑋𝑐𝑜𝑠 = COS⁡(𝑇 ∗ (
2∗𝜋

𝑇
)) 

For f = 1, introduce 𝑋𝑠𝑖𝑛 and𝑋𝑐𝑜𝑠. T is the time for data collection. In addition, creates the direction of the wind 

understood by models. Angular direction of the wind. Models should know that 0° and 360° are the same. In 

addition, in light winds, the wind direction is useless. Therefore, link these variables. To generate two new variables 

(wind speed and direction) in Eqs. (3) and (4) 

𝑊𝑌=𝑤𝑠 sin(𝑤𝑑) 

𝑊𝑋 = 𝑤𝑠cos⁡(𝑤𝑑) 

𝑊𝑋and 𝑊𝑌are two original variables, 𝑤𝑠 and 𝑤𝑑, individually, wind speed and direction at time T. 

2.7 NORMALIZE AND STANDARDIZE DATA 

During model training, it's important to scale variables with different orders of magnitude. Standardization or 

Minmax normalization are used. This study uses Eq. (5)'s Minmax normalization, which doesn't require knowledge 

of data distribution. 

𝑋𝑁𝑂𝑅𝑀 = 𝐴 +
(𝑋 − 𝑀𝐼𝑁(𝑋)(𝐵 − 𝐴)

𝑀𝐴𝑋(𝑋) −𝑀𝐼𝑁(𝑋)
 

𝑋𝑁𝑂𝑅𝑀⁡Denotes the usual variables, A and B are limits of original scale. 

2.8 DATA SUB-DIVISION 

The majority of the dataset (75%) is utilized for model training, while 25% is used for hyper parameter tuning and 

15% is used for test. The purpose of the research is to optimize the power output of wind turbines and the production 

scheduling of wind turbines.  Figure 3 below shows wind profiles for sub-areas of the research area which are either 

identical or similar to each other in terms of their wind patterns. 

 

Figure 3 Division of Sub-Area 
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This indicates that samples that have the same climatological and/or hydrological properties are grouped. This 

method will cut down on the total number of research participants by employing recognized time series clustering 

methods. Research on the environment and renewable energy sources often groups wind speed measurements. It 

recognizes patterns and combines wind speed observations that are equivalent. There are a few different methods 

that may be used to cluster wind speed data. In this investigation, k-means clustering was used to analyse wind 

speed. The selection of the appropriate value for the clustering technique known as K-means is the step that is 

considered to be the most crucial. There are a few different routes that may be pursued to accurately determine the 

value of K. These methods include, for instance, the elbow technique and the silhouette score. Carry out several 

tests using a diverse range of K values to focus on the one that gives the most accurate picture of the underlying 

structure of your wind speed data. A statistical analytic technique called clustering is used to arrange unprocessed 

data into uniform silos. Data is organized into groups based on a shared feature within each cluster.  

The sorting tool will employ predetermined criteria to assess how close elements are to one another. In this study, 

the grouping of the time sequence of the speed of the wind was accomplished by the use of the k-means approach. 

The K-means algorithm is a kind of unsupervised, non-hierarchical clustering method. The term "algorithm" refers 

to a set of step-by-step instructions or procedures that the algorithm facilitates the partitioning of the observations 

in the dataset into K separate clusters.  The same cluster will have comparable data. Furthermore, it is important to 

note that an observation may only be assigned to a single cluster at any one moment, and thus cannot simultaneously 

be a member of many distinct clusters. The exclusivity of membership is seen in a single cluster at a given moment. 

The aforementioned remark cannot be applied universally. The data points are assigned to two distinct clusters. The 

exclusivity of membership is seen in a single cluster at a given moment. The aforementioned remark cannot be 

applied universally. The data points are assigned to two distinct clusters. There is no clustering for the same dataset. 

The challenge is selecting K clusters that reveal intriguing data patterns. Most cluster numbers are chosen by 

computing the variance of K-means with various K values. Clusters. Varying distances between cluster centroids 

and cluster observations make up the variance. Therefore, strive to locate k clusters that reduce the gap between 

their geographic centres and what is seen in the same cluster. The cluster count indicates the number of wind profiles 

in the research region Grid space and study-area samples are optimized by clustering. Figure 4: Proposed 

optimization approach. Sample until increased clusters (wind profiles) end. 

 

Figure 4 Optimization of Flow Chat for Grid Pitch and Cluster 
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DATA SUB-DIVISION 

The majority of the dataset (75%) is utilized for model training, while 25% is used for hyper parameter tuning and 

15% is used for test. The purpose of the research is to optimize the power output of wind turbines and the production 

scheduling of wind turbines.  Figure 5 below shows wind profiles for sub-areas of the research area which are either 

identical or similar to each other in terms of their wind patterns. 
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Figure 5 Division of Sub-Area 

This indicates that samples that have the same climatological and/or hydrological properties are grouped. This 

method will cut down on the total number of research participants by employing recognized time series clustering 

methods. Research on the environment and renewable energy sources often groups wind speed measurements. It 

recognizes patterns and combines wind speed observations that are equivalent. There are a few different methods 

that may be used to cluster wind speed data. In this investigation, k-means clustering was used to analyse wind 

speed. The selection of the appropriate value for the clustering technique known as K-means is the step that is 

considered to be the most crucial. There are a few different routes that may be pursued to accurately determine the 

value of K. These methods include, for instance, the elbow technique and the silhouette score. Carry out several 
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structure of your wind speed data. A statistical analytic technique called clustering is used to arrange unprocessed 

data into uniform silos. Data is organized into groups based on a shared feature within each cluster.  

The sorting tool will employ predetermined criteria to assess how close elements are to one another. In this study, 

the grouping of the time sequence of the speed of the wind was accomplished by the use of the k-means approach. 

The K-means algorithm is a kind of unsupervised, non-hierarchical clustering method. The term "algorithm" refers 

to a set of step-by-step instructions or procedures that the algorithm facilitates the partitioning of the observations 

in the dataset into K separate clusters.  The same cluster will have comparable data. Furthermore, it is important to 

note that an observation may only be assigned to a single cluster at any one moment, and thus cannot simultaneously 

be a member of many distinct clusters. The exclusivity of membership is seen in a single cluster at a given moment. 

The aforementioned remark cannot be applied universally. The data points are assigned to two distinct clusters. The 

exclusivity of membership is seen in a single cluster at a given moment. The aforementioned remark cannot be 

applied universally. The data points are assigned to two distinct clusters. There is no clustering for the same dataset. 

The challenge is selecting K clusters that reveal intriguing data patterns. Most cluster numbers are chosen by 

computing the variance of K-means with various K values. Clusters. Varying distances between cluster centroids 

and cluster observations make up the variance. Therefore, strive to locate k clusters that reduce the gap between 

their geographic centres and what is seen in the same cluster. The cluster count indicates the number of wind profiles 

in the research region Grid space and study-area samples are optimized by clustering. Figure 6 Proposed 

optimization approach. Sample until increased clusters (wind profiles) end. 

 

Figure 6 Optimization of Flow Chat for Grid Pitch and Cluster 
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2.8.1 SUBAREA CHARACTERIZATION 

After the sub-areas have been formed it is important to determine the most suitable months for manufacturing wind 

turbines. Calculate the wind speeds for each of the sub-zones, bearing in mind that moderate to high variation is to 

be anticipated, and then proceed to the next step. Applying the Weibull distribution to control the position of wind 

turbine blades as well as the most typical wind speeds get your bearings with the help of wind roses 

III. PREDICTING WIND POWER 

Models for predicting the performance of wind turbines often use elements of both physics-based and statistical 

models, as well as machine learning methods.  Precise estimations of energy output to improve the operation and 

maintenance of wind farms must be given. This will ensure that power generated by wind turbines is both efficient 

and dependable. 

3.1 OPTIONAL FORECASTING METHODS 

The wind power forecasting models are then trained using the data that was collected after the optimal production 

periods had been identified. Attempting to forecast times when wind turbines will not be operational is pointless. 

The literature lists numerous wind power forecasting methods. Figure. 5 shows the first method. This first method 

uses a time series forecasting model and power reading history to predict wind turbine power values. Simple design, 

but predicting model only applicable for installation where data were generated. Power measurement intervals must 

be lengthy for reliable forecasting. Time series forecasting and regression were used in a second method (Figure. 

6). The time series forecasting model predicts wind speed, which the regression model links to wind turbine power 

values. Historical wind power and impact parameter data are needed for this. As with the previous model, the 

architecture is more sophisticated and the representation is only usable for the system it was built for and its 

surroundings indeed, meteorological characteristics depend on geography. A time sequence prediction model 

predicts future parameters and a Palla-bazer, linear, Chang wind power estimating model estimates wind turbine 

features such asas 𝑣𝑐𝑢𝑡−𝑜𝑓𝑓,𝑣𝑟𝑎𝑡𝑒𝑑  and Prated in the final technique (Figure. 7). 

 

Figure 7 Forecasting model 1 

 

Figure 7 Forecasting model 2 
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Figure 7 Forecasting model 3 

Assigning the installation site and repeating the impact parameter prediction model to alter the power estimate model 

parameters may be used for different wind turbines. It's more fluid and adaptive without the system, but the process 

continues. 

3.2 SELECTION OF FORECASTING MODEL 

A forecasting model and wind speed time sequence are used to assess future power using the projected 

turbine’s power curve model and speed. A thorough wind power and wind speed forecasting model survey. The 

classic neural network is improved by convolution. Designed for image processing, it encodes visual characteristics 

while lowering model configuration requirements. Besides input and output layers, CNNs include convolutional, 

pooling, and fully linked layers (Figure. 8) Assessment suggests that LSTM and CNN are the best basic wind speed 

forecasting models. Recurrent neural networks are improved using LSTM neural networks to tackle the vanish 

gradient problem. LSTM units consist of a dynamic memory c and gates of three – Input, Forget, and Output. The 

Forget Gate devalues knowledge that was helpful as of t − 1 but is now useless. The output Gate controls information 

transmission at t+1 using active memory C and the action function. Three gates govern information flow in LSTM 

cells, which store values at random intervals using memory vector C Figure. 9. The well-organised model of each 

wind profile (sub-area wind speediness changes) will be compared. 

Use the typical power curve to estimate wind-generating power. A wind speed curve shows electricity production. 

Wind generator-specific. A literature-based power curve model or actual curves with an interpolation technique 

may be used to simulate wind turbines. Our next section presents three power curve modelling approaches and 

market-available small and medium power devices. Power curve parameters include: 

 

Figure 8 CNN models 
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Figure 9 LSTM Unit Model 

𝑣𝑐𝑢𝑡−𝑖𝑛  : The rate at which the electricity is activated. 

𝑣𝑟𝑎𝑡𝑒𝑑 : The pace at which the rated power is achieved. 

𝑣𝑐𝑢𝑡−𝑜𝑓𝑓:⁡ The rate at which the electricity is deactivated. 

𝑝𝑟𝑎𝑡𝑒𝑑:Rated power 

The linear form is a basic approach that assumes a linear relationship between the variables, implying that the power 

fluctuation between 𝑣𝑐𝑢𝑡  and 𝑣𝑟𝑎𝑡𝑒𝑑  is linear. Therefore, the diminished power curve is represented by three 

components. 

𝑃 = {

0, 𝑉 ≤ ⁡𝑉𝑐𝑢𝑡−𝑖𝑛
𝐴 + 𝑉𝑐𝑢𝑡−𝑖𝑛 < 𝑉 <

1, 𝑉𝑟𝑎𝑡𝑒𝑑 < 𝑉 < 𝑉𝑐𝑢𝑡−𝑜𝑓𝑓

𝑉𝑐𝑢𝑡−𝑟𝑎𝑡𝑒𝑑 

The coefficients A and B are acquired or determined. 

{
 

 𝐴 =
⁡𝑉𝑐𝑢𝑡−𝑖𝑛

𝑉𝑟𝑎𝑡𝑒𝑑 − ⁡𝑉𝑐𝑢𝑡−𝑖𝑛

𝐵 =
1

𝑉𝑟𝑎𝑡𝑒𝑑 − ⁡𝑉𝑐𝑢𝑡−𝑖𝑛

 

𝑃 = (
𝑉2 − 𝑉𝑐𝑢𝑡−𝑖𝑛

2

𝑉𝑟𝑎𝑡𝑒𝑑
2 − 𝑉𝑐𝑢𝑡−𝑖𝑛

2 ) 

Research findings indicate a tendency to overestimate the productivity of wind generators. However, despite this 

observed discrepancy, the use of this model remains prevalent in research about hybrid systems. 

The Pallabazzer model also distinguishes itself from the linear model due to the non-linear nature of the curve 

between the engagement speed and the speed at which the nominal power is achieved. In this section, the diminished 

authority is articulated through: 

𝑃 = 𝐴1𝑉
3 + 𝐴22 + 𝐴3𝑉 + 𝐴4 
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𝑃𝑀𝐸𝐶 =
1

2
𝐶𝑃𝐴𝑅𝑝𝑎𝑉

3 

3.3 OPTIMIZING FORECASTING HYPERPARAMETERS 

Discovering which model parameters improve performance is crucial. To predict meteorological parameters, we 

used CNN and LSTM models. The hyper parameters of these two models and their optimization ranges are shown 

in Table 1. Input data sequence: 2–63 h, forecast sequence: 2–23 h. CNN operates with 20–200 filters and 20–900 

units. Also, the LSTM network has 100–1000 units. 3 learning rates: 20–3, 20–4. Optimization occurs. 

TABLE: 1 CNN &LSTM parameter 

CNN parameter LSTM parameter 

WIDTH INPUT                 2 TO63 H  

WIDTH LABLE                 2 TO 23 H  

FILTERS                            20 TO 

200 

UNITES 20 TO 900 

UNITS                                20 TO 

900 

 

LEARNING -RATES          20-3 20-4 LEARNING -RATES          20-3 20-4 

3.4 MODELS TRAINING 

Meteorological data (wind speed and direction) and optimal hyper parameters are used to train the models. Tensor 

Flow is used to develop CNN and LSTM models during the training process in Python 3. 

3.5 CLUSTERING EVALUATION 

Selecting the proper measure is crucial for model evaluation. This research analyzes models using these measures. 

A determination's quality is indicate squared linear regressions. Fitting the model to the observed data with a value 

between 0 and 1. Simple linear equation 

𝑅2 = 1 −
∑ (𝑌𝐼−𝑌𝐼)

2̂𝑁
𝐼=1

∑ (𝑌𝐼−𝑌)
2̅̅ ̅̅ ̅𝑁

𝐼=1

 

The average of the squares of the mistakes is the mean square error (MSE), which measures prediction model 

quality.  Outliers and big mistakes are penalized. The formula for expressing it: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝐼

𝑁

𝐼=1

− 𝑌𝐼̂)
2 

Yi is the real value, Y^i is the anticipated value, and n is the forecast size. 

MSE may be reduced to the same unit as the quantity assessed using the root mean squared error (RMSE). This is 

the square root of MSE: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝐼

𝑁

𝐼=1

− 𝑌𝐼̂)
2 

NRMSE, an extension of MSE, is used to assess wind speed prediction models in the literature. Divide square 

root error by series range. The Silhouette (start writing) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑌𝑀𝐴𝑋 − 𝑌𝑀𝐼𝑁
𝑜𝑢𝑁𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸

𝑌̅
 

The quality of a clustering may be measured by a statistic called the Silhouette score. It varies from 1 to 1:  
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If the coefficient is negative, the classification is inaccurate; if it is zero, the categorised element is either very 

near the cluster's decision border or is out on its own. Obtaining a positive coefficient indicates that the 

categorization is accurate. 

The formula provides an equation for it. 

𝑆𝑆𝐼𝐿 =
𝐵 − 𝐴

𝑀𝐴𝑋(𝐴, 𝐵)
 

The variables "A" and "B" reflect the mean distance between a data point and its corresponding group and the 

normal distance between the data point and its adjacent cluster, respectively. 

IV. RESULTS GRID SAMPLE 

The gridding method and the changeable range of latitude (l) and longitude (L) are both shown in Figure 10. The 

latitudes of the samples ranged from 4.535 degrees to 22.6 degrees, while the longitudes ranged from 0.8 degrees 

to 5.065 degrees the step angle of 0.15 degrees provides the most accurate results for the grid. Keep in mind that 

the grid spacing that has the fewest clusters of meteorological parameter profiles, in this case wind speed, and is the 

best. There is a difference of 0.085 degrees between a test sample and a validation sample, but there is a difference 

of 0.25 degrees between two test examples or two validation samples. Validation samples assess cluster quality 

while test samples generate clusters. 2880 test and 2280 validation samples were collected. 

 

Figure 10:  gridded map (study area) 

4.1 PRESENTING DATA 

 

Figure 11: 90 clusters of silhouette score 
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There are no obvious irregularities to be found. When compared to the highest values, which vary from 6.89 to 16 

meters per second, the mean values fall somewhere in the range of 4.45 to 6.36 meters per second. Because it is 

common knowledge that wind turbines need a minimum starting speed of 3 meters per second, the inclusion of this 

information makes it possible to continue the examination over the whole of the territory under consideration for 

the study. It is worth mentioning that there exists a range of standard deviations ranging from 2.18 to 3.3 m/s. The 

observed variances in statistics also indicate disparities among the various samples. 

4.2.1 CLUSTER ANALYSIS 

The clustering process will commence after researchers have determined that the data are usable and that the 

research would be beneficial to the whole study area. This area is used to aggregate the samples that were taken at 

consistent wind speeds over the whole study region. Every cluster denotes a smaller region that maintains a 

consistent wind speed. 90 groupings total. See Figure 11 for the 90 clusters' Silhouette scores. Silhouette scores are 

near 1 for 89 clusters, indicating complete resemblance. Silhouette score: 0 for cluster 90. Because this cluster has 

one sample, this value is generated. Wind speeds in clusters 90 and 56 for August 2020. Cluster 56 has flawlessly 

stacked curves. Cluster 90 has exactly one curve, confirming the Silhouette score of 0. For clarity, the samples' wind 

speed profiles are called Windspeed Latitude Longitude. Other cluster results are after setting up the clusters, 

validation samples show that the 90 clusters represent the full research region. Figure 12 displays the 1080 validation 

samples' Silhouette score. A silhouette scores all above our 0.9 criteria (range 0.96–1). Hence, the 90 detected 

profiles indicate wind speed changes over the research region. N 

4.2.2 CHARACTERIZE EACH SUBAREA 

The clustering process produces a total of ninety subzones. In each sub-area, the predominant wind directions are 

mapped out in preparation for the construction of wind turbines. As a result of the large number of sub-zones, only 

cluster 56, which was chosen at random, will be presented. Choose any sub-zone. The sub-area 56 wind increase is 

shown in Figure 13. This zone has southwest-blowing winds. This helps us find an appropriate blade orientation. 

The wind speed frequency histogram and Weibull distribution. The wind speed is 4.4 M/S. The most convincing 

wind speeds are 3.2–6.4 m/s. This speed range permits wind turbine installation. When would ideal production 

occur? 

In sub-area 56, periodical wind speeds vary from 3.37 to 5.3 m/s and 1.55 to 2.3 m/s, as shown in Figure 14. To find 

the best manufacturing time, compare monthly wind speeds and standard deviations. This sub-area has an excellent 

manufacturing period from Sep. to Dec. since wind turbines start at 7.2 to 10 km/h. 

 

Figure 12: silhouette score for validation 
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Figure 13:  Sub Area 56 of Wind Rose 

Once a year, day-by-day, half-day, third-day, and quarter-day attendance are noteworthy. After adding columns, 

Figure 14 displays the dataset. For wind speed and direction predictions for sub-area 56, Tables 2 and 3 show CNN 

and LSTM hyper parameter tuning results. Both models performed best with an 11-hour prediction using 17 hours 

of prior data. Therefore, we only offer 17_11 model results. For CNN 𝑤𝑥and 𝑤𝑦 predictions, optimum (filters, 

units, and learning rate) parameters were (60, 690, 11–3) and (60, 200, 11–3). 

 

Figure 14:  monthly average and standard deviation of winds for sub-area 56 

The models are trained using meteorological data for each sub-area's best production times. To achieve this, translate 

wind speed and direction data while adding new variables using the speeds' predominant frequencies. Fast Fourier 

transform (FFT) of sub-area 56 wind speed is shown in Figures 15 and 16. Respectively. In the LSTM, optimum 

(units, learning speed) parameters for W x and W y forecast were (560, 11–3) and (150, 11–3). The LSTM model 

has the highest performance in predicting W x and W y, with R2 coefficients of determination (86%, 0.47 m/s) and 

RMSE (91%, 0.33 m/s). These sub-areas wind speed and direction prediction use the LSTM model respectively. 

For W X and W Y predictions, the LSTM found optimum (units, learning rate) parameters of (560, 10–3) and (260, 

10–3). The highest-performing model for predicting W x and W y is the LSTM, with R2 coefficients of 

determination (86%, 0.47 m/s) and RMSE (91%, 0.33 m/s). Thus, these sub-areas wind speed and direction 

prediction use the LSTM model. The 11-hour forecasts of W x and W y on three randomly chosen test set pieces. 

These statistics show that anticipated trends are typically accurate. However, anticipated and real W x and W y 

differ. They reflect the goal and projected W x and W y, correspondingly. The outlook is favourable. Table 4 shows 

forecasted results. Wind speed and direction are calculated from W x and W y predictions. The forecasted wind 

speed and direction.  
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Figure 15: Wind Speed FFT 

The challenging aspect of learning is attributed to the unpredictable fluctuations in wind speed. 

The wind speed and direction values may be inferred from the forecasted values of. Therefore, we get the 12-hour 

prediction values for W x and W y.{
𝑊𝑌 = 𝑊𝑆⁡𝑆𝑖𝑛(𝑊𝐷)

𝑊𝑌 = 𝑊𝑆⁡𝑐𝑜𝑠(𝑊𝐷)
⟹

𝑊𝑌

𝑊𝑋
= 𝑡𝑎𝑛𝑊𝐷⁡⁡𝑎𝑛𝑑⁡𝑊𝐷 = 𝑡𝑎𝑛−1(

𝑊𝑌

𝑊𝑋
⁡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

The forecast provides information on wind speed and direction for 11 hours. 

 

(a) 

 

(b) 

Figure: 16 data set of the new variable 
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Table 2:𝒘𝒙 forecasting CNN and LSTMPresentation 

CNN parameter LSTM parameter 

WIDTH INPUT                 17 h  

WIDTH LABLE                 11 h  

FILTERS                            60 UNITES                                200 

UNITS                                690  

LEARNING -Rates          11-3 LEARNING -Rates          11-3 

 

Table 3:𝒘𝒚 forecasting CNN as well as LSTM Presentation 

CNN parameter LSTM parameter 

WIDTH INPUT                 15 h  

WIDTH LABLE                 11 h  

FILTERS                            60 UNITES                                150 

UNITS                                690  

LEARNING -RATES          11-3 LEARNING -RATES          11-3 

𝑊𝑆 =
𝑊𝑌

sin⁡(𝑡𝑎𝑛−1
𝑊𝑌

𝑊𝑋
)
 

A validation was conducted to assess the forecasting ability of the models using data from December 31, 2020, and 

January 1, 2021. 

Figures 17, 18 and 19 provide the typical curves of the goal and projected values for W x and W y, individually. 

The forecast has a high level of accuracy. The wind speed and direction values are inferred from the forecasted 

variables W x and W y, which are expected to provide accurate estimations of the actual (goal) standards of wind 

speed and direction. 

 

Figure 17: wind speed forecast 
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Figure 18: wind direction forecast 

Table 4 shows forecasted results. The coefficients of determination for wind speed and direction are 93% and 70%, 

correspondingly, with square root errors of 0.35 m/s and 8.9 rad. The LSTM model can predict wind speed and 

direction medium term with these results. Forecasting with deep learning networks is usually short-term and has a 

Root Mean Square Error > 0.7 m/s. Forecast timeframes, datasets, and computers vary. This makes accuracy and 

computation time comparisons difficult. The LSTM model is more efficient even with a 12-hour horizon for most 

wind speed prediction models. 

Table 4: Wind Direction and Wind Speed Forecasting 

Forecasting wind speed  

RMSE                                                         

0.23M/S 

R2                                                          

98% 

Forecasting wind direction  

RMSE                                                            

70% 

 

Figure 19: wind power estimated 

V. CONCLUSION 

The conclusion outlines the approaches and variables that were used. Intermittent production makes use of 

performance, wind turbines, photovoltaic power generation, and the randomization of photovoltaic energy. LSTM 

time series forecasting and wind turbine power curve approximation models were utilized in these studies. These 

models were able to predict the 24-hour wind direction and speed, as well as the output power of the wind generator. 

The large area of wind generators can be anticipated and determined with this tool. Predictions for wind speed, 
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direction, and power was clustered. Forecasts for wind and direction have RMSE (0.35 m/sec, 7.9 rad) and R2 (94%, 

71%). Generator power is random. Similar to the wind, wind turbine power swings randomly, but with a minimum 

beginning speed. Different locations affect wind and PV generator performance and power. After installing a 

generator, wind speed randomness must be used to estimate output power. This study utilized clustering and AI to 

determine optimal wind power production locations and periods. An LSTM and a wind turbine power curve 

approximation model were used in this research project to provide forecasts about the wind speed, direction, and 

output power over a period of 12 hours. Wind turbine impacts must be balanced using a comprehensive, multi-

stakeholder strategy.  Planning, community interaction, environmental preservation, and renewable energy 

promotion are needed. To maximize wind energy advantages, minimize the environmental and community 

consequences. With this information, a nation will be better able to identify places for wind turbines and predict 

their performance throughout the year. 
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