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Abstract: - The rapidly evolving landscape of Aspect-Based Sentiment Analysis (ABSA) in the realm of natural language processing 

necessitates innovative approaches to comprehend and interpret the intricate nature of sentiments expressed in textual data. Traditional ABSA 

methods have often struggled with the nuanced sentiments inherent in various textual sources, limited in their ability to adapt to domain-

specific vernacular and context. This study introduces a novel approach that synergizes rule mining with advanced deep learning techniques, 

aiming to address these limitations and enhance the precision and contextual understanding in sentiment analysis. Our proposed model 

integrates rule-based systems with deep learning Transformers, a method recognized for its effectiveness in extracting structured, domain-

specific insights. This integration results in a significant enhancement in the model's ability to capture nuanced sentiments, as demonstrated 

by an 8.5% increase in aspect-based sentiment analysis precision and an 8.3% improvement in accuracy over existing methods. The model 

employs a combination of techniques including Bi-LSTM, BiGRU-CRF with RNNs, and ontology mapping operations, forming a Hybrid 

Multi-Level Architecture that effectively captures both sequential data relationships and semantic context. Additionally, the model 

incorporates Cross-Domain Transfer Learning, utilizing BERT-based pre-trained models with added layers for contextual semantics, which 

has shown notable generalization capabilities across various domains. Furthermore, this study refines evaluation parameters, tailoring metrics 

such as domain-specific accuracy, recall, and precision to more accurately assess model performance in particular domains. This is especially 

pertinent in our analysis of Twitter datasets specific to industries like finance and healthcare. The inclusion of Temporal Dynamics and Aspect 

Summarization, using techniques like the VARMAx process, provides insights into the evolution of sentiments and aspects over time, an 

aspect crucial for longitudinal sentiment analysis. The comprehensive testing of our model on diverse spatial and temporal datasets reveals 

not only improved precision and accuracy in sentiment analysis but also a reduction in delay, demonstrating its efficiency and responsiveness. 

The study's findings indicate that our approach could significantly impact fields reliant on sentiment analysis, such as market analysis, public 

opinion research, and social media monitoring, providing a more nuanced and accurate understanding of consumer sentiments and trends. 

This paper's contribution lies in its innovative amalgamation of rule-based and deep learning techniques, tailored evaluation metrics, and its 

emphasis on temporal dynamics, setting a new precedent in the field of ABSA and opening avenues for further research and application in 

real-world scenarios. 
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I. INTRODUCTION 

The field of natural language processing (NLP) has seen significant advancements in recent years, particularly in 

the area of sentiment analysis. Sentiment analysis, at its core, aims to systematically identify, extract, and quantify 

affective states and subjective information from textual data. However, as the complexity of language and the 

breadth of data sources expand, traditional sentiment analysis methodologies often fall short in addressing the 

nuanced and context-specific nature of human sentiments. This limitation is especially pronounced in Aspect-Based 

Sentiment Analysis (ABSA), where the focus is on understanding the sentiments expressed about specific aspects 

within a text, rather than the overall sentiment. ABSA's importance in diverse fields ranging from market research 

to social media analytics underscores the need for more sophisticated and robust methodologies. 

Traditional ABSA approaches primarily rely on either rule-based systems or machine learning techniques. Rule-

based systems, while effective in capturing structured, domain-specific insights, often lack the flexibility and 

scalability necessary to adapt to varied and evolving linguistic contexts. On the other hand, conventional machine 

learning models, despite their adaptability, struggle with the subtleties of human language, such as irony, sarcasm, 

and context-dependent meanings. 

Recent developments in deep learning, particularly the advent of Transformer models, have opened new avenues 

for addressing these challenges. These models, characterized by their ability to handle large datasets and capture 
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contextual relationships in text, offer a promising direction for enhancing ABSA. However, the integration of these 

advanced deep learning models with traditional rule-based systems remains underexplored. 

In this paper, we introduce a novel approach that synergizes the structured insight extraction capabilities of rule-

based systems with the contextual understanding and adaptability of deep learning models. This integration aims to 

harness the strengths of both methodologies, resulting in a more nuanced and accurate interpretation of sentiments 

in textual data. Our proposed model leverages a Hybrid Multi-Level Architecture, combining Bi-LSTM, BiGRU-

CRF with RNNs, and ontology mapping operations, to effectively capture both sequential data relationships and 

semantic context. 

Furthermore, we emphasize the importance of tailored evaluation metrics in ABSA. Traditional metrics such as 

accuracy, precision, and recall, while useful, often do not fully encapsulate the model's performance in specific 

domains. We propose domain-specific evaluation metrics, ensuring that our model's effectiveness is accurately 

assessed in the contexts it is applied to. 

Additionally, we explore the role of temporal dynamics in ABSA, incorporating time-series analysis techniques to 

understand how sentiments and their associated aspects evolve over time. This aspect is crucial for applications 

requiring longitudinal sentiment analysis, such as trend analysis and monitoring public opinion over extended 

periods. 

The integration of these methodologies and the focus on both spatial and temporal aspects of sentiment analysis set 

our work apart, contributing significantly to the field of ABSA. This paper details our approach, its implementation, 

and the results from extensive testing across various datasets, demonstrating the efficacy and potential of our model 

in advancing the capabilities of ABSA. 

Motivation & Contribution 

The motivation behind this research stems from the critical need to enhance Aspect-Based Sentiment Analysis 

(ABSA) in the face of rapidly evolving linguistic expressions and the increasing complexity of sentiment 

expressions in digital communications. The exponential growth in the volume of online textual data, such as product 

reviews, social media posts, and industry-specific discussions, necessitates an ABSA approach that is not only 

accurate and efficient but also adaptable to diverse linguistic contexts and capable of understanding intricate 

sentiment nuances. Traditional ABSA methodologies, while foundational, exhibit significant limitations when 

confronted with the dynamic and often ambiguous nature of human language. This gap in capability highlights an 

urgent need for innovation in this domain. 

Our research contributes to the field of ABSA through several key advancements: 

● Integration of Rule-Based and Deep Learning Systems: We propose an innovative approach that combines 

the structured, rule-based analysis with the contextual comprehension capabilities of deep learning models, 

particularly Transformers. This integration aims to leverage the precision of rule-based systems in identifying 

domain-specific sentiment expressions while harnessing the adaptability and scalability of deep learning models 

to handle complex, context-dependent linguistic nuances. 

● Hybrid Multi-Level Architecture for ABSA: The introduction of a hybrid architecture, which integrates Bi-

LSTM, BiGRU-CRF with RNNs, and ontology mapping operations, marks a significant advancement in ABSA. 

This architecture is designed to capture both the sequential and semantic relationships within textual data, 

thereby enhancing the model's ability to understand and interpret sentiments with greater depth and accuracy. 

● Tailored Evaluation Metrics for Domain-Specific Analysis: Recognizing the limitations of conventional 

evaluation metrics in ABSA, we introduce tailored evaluation parameters, including domain-specific accuracy, 

recall, and precision. These metrics are crucial for accurately assessing the model's performance in particular 

domains, ensuring that the model is evaluated against criteria relevant to its application context. 

● Incorporation of Temporal Dynamics: Our research acknowledges the importance of temporal dynamics in 

sentiment analysis. By incorporating time-series analysis techniques, we enable the model to track and interpret 

how sentiments and their associated aspects evolve over time. This approach is particularly valuable for 
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applications requiring a longitudinal analysis of sentiments, such as trend analysis and monitoring public 

opinion. 

● Extensive Testing Across Diverse Datasets: The model's effectiveness and robustness are demonstrated 

through comprehensive testing across a range of spatial and temporal datasets, including Yelp and Amazon 

reviews, Twitter datasets for specific industries, IMDB movie reviews, and longitudinal social media datasets. 

The results show significant improvements in precision, accuracy, recall, and other key metrics, underscoring 

the model's superiority over existing methods. 

The contributions of this paper are geared towards addressing the challenges of traditional ABSA methodologies, 

providing a more sophisticated, adaptable, and accurate tool for sentiment analysis. This research paves the way for 

future studies and applications in NLP, offering significant implications for industries reliant on understanding 

consumer sentiments, market trends, and public opinions. 

II. LITERATURE REVIEW 

The field of Aspect-Based Sentiment Analysis (ABSA) has witnessed significant developments, spurred by the 

growing complexity of linguistic expressions and the need for models that can accurately interpret nuanced 

sentiments in various textual data sources. This literature review explores recent advancements and methodologies 

in ABSA, drawing insights from various studies to contextualize the current research landscape. 

Wojtczak et al. [1] investigated the discourse and engagement patterns across misinformation topics on Twitter, 

providing valuable insights into the nature of social media content, which is crucial for ABSA. Jiang et al. [2] 

explored scope detection in ABSA, highlighting the importance of identifying the specific aspects within texts for 

accurate sentiment analysis. These studies underscore the complexity and variability of language used in social 

media, a key consideration for ABSA models. Yu et al. [3] presented a hierarchical interactive multimodal 

Transformer for ABSA, emphasizing the role of multimodality in understanding sentiments. Wu et al. [4] explored 

multi-tasking in ABSA, introducing auxiliary self-supervision tasks to enhance model performance. These 

approaches demonstrate the potential of using advanced neural network architectures and multi-task learning 

strategies in ABSA. 

Zhang et al. [5] focused on detecting dependency-related sentiment features, pointing out the significance of 

understanding linguistic dependencies for aspect-level sentiment classification. Lin et al. [6] proposed a contrastive 

learning approach for cross-lingual ABSA, indicating the growing need for models that can perform sentiment 

analysis across different languages. In the realm of transfer learning, Jahanbin and Chahooki [10] utilized hybrid 

deep transfer learning models to analyze sentiments of Twitter influencers, a method that has shown promise in 

enhancing the adaptability of ABSA models to different domains. Similarly, Zhang et al. [7] developed an Efficient 

Adaptive Transfer Network (EATN) for aspect-level sentiment analysis, emphasizing the effectiveness of transfer 

learning in ABSA. 

Ma and Guo [8] introduced a Dense Concatenation Memory Network for ABSA, showcasing the advancement in 

memory network applications for sentiment analysis. Liang et al. [9] developed an embedding refinement 

framework targeted for ABSA, furthering the understanding of how sophisticated embedding techniques can 

enhance sentiment analysis accuracy. In addressing the challenges of cross-domain analysis, Zhang et al. [13] 

exploited domain-invariant semantic-primary features for cross-domain ABSA, highlighting the importance of 

domain adaptability in sentiment analysis models. Cao et al. [15] implemented a heterogeneous reinforcement 

learning network with external knowledge for ABSA, demonstrating the integration of external knowledge sources 

for improving model performance. Nayab et al. [14] and Hu et al. [16] both emphasized the significance of context 

and multi-aspect analysis in sentiment classification. Their research supports the notion that understanding the 

contextual and aspectual nuances of text is crucial for accurate sentiment analysis. 

Lastly, Durga and Godavarthi [17] and Le Thi et al. [18] focused on deep learning techniques for identifying implicit 

aspects in texts, underlining the evolving nature of deep learning applications in ABSA. Zhong et al. [19] introduced 

a Knowledge Graph Augmented Network for multiview representation learning in ABSA, emphasizing the 

integration of external knowledge sources for enhancing sentiment analysis. This approach is significant for its 

potential to enrich the model's understanding of aspect-specific sentiments. Similarly, Hu et al. [20] focused on fine-

grained domain adaptation, illustrating the growing importance of domain-specificity in ABSA models. 
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Meta-learning has also garnered attention, as seen in the work of He et al. [21], who utilized meta-based self-training 

and re-weighting strategies for ABSA. This study underscores the potential of meta-learning techniques in 

improving the adaptability and accuracy of sentiment analysis models. Liu et al. [22] further explored this theme by 

developing a unified instance and knowledge alignment pretraining method for ABSA, reinforcing the significance 

of incorporating diverse knowledge sources. Transfer learning remains a focal point, as illustrated by Huang et al. 

[23], who investigated transfer learning with document-level data augmentation for aspect-level sentiment 

classification. This research highlights the utility of transfer learning in adapting models to diverse linguistic 

contexts. In a similar vein, Kim and Qin [24] employed cluster and sentiment analysis to summarize student 

responses, demonstrating the application of ABSA in educational contexts. 

Mishra and Panda [25] presented a novel approach using dependency structure-based rules for explicit aspect 

extraction from online reviews. Their methodology emphasizes the importance of linguistic structure in 

understanding sentiments. Zheng et al. [26] explored auto-adaptive model transfer for aspect-level sentiment 

classification, adding to the growing body of literature on adaptable ABSA models. In the realm of gaming and 

esports, Yu et al. [27] used ABSA to mine insights from game reviews, showcasing the model's applicability in the 

gaming industry. Fei et al. [28] introduced a nonautoregressive encoder-decoder framework for end-to-end aspect-

based sentiment triplet extraction, contributing to the development of efficient ABSA architectures & scenarios. Li 

et al. [29] developed TSSRD, a topic sentiment summarization framework, emphasizing the need for summarization 

techniques in ABSA. Zhou et al. [30] focused on causal inference for aspect debiasing in ABSA, addressing the 

challenge of bias in sentiment classification. 

The utilization of advanced language models like BERT and ELECTRA for detecting fake reviews, as explored by 

Catelli et al. [31], highlights the expanding scope of ABSA in various applications, including cultural heritage and 

authenticity verification. Liu et al. [32] proposed an end-to-end Hierarchical Interaction Model (HIM) for aspect 

sentiment triplet extraction, furthering the exploration of advanced neural network architectures in ABSA. 

Cryptocurrency sentiment analysis, as investigated by Girsang and Stanley [33], and the impact of annotators' 

selection by Gadi and Sicilia [35], illustrate the diverse applications and considerations in ABSA. Zhang et al. [34] 

and Zhou et al. [36] expanded on the theme of domain-specific and fine-grained sentiment analysis, with a focus on 

e-commerce texts and topic-enhanced language models, respectively. Shafiq et al. [37] focused on enhancing Arabic 

ABSA using an end-to-end model, addressing the need for language-specific sentiment analysis solutions. This 

study highlights the importance of developing ABSA models that are adaptable to various languages and linguistic 

nuances. Hussain et al. [38] introduced PRUS, a product recommender system based on user specifications and 

customer reviews, demonstrating the practical application of ABSA in e-commerce and consumer decision-making 

process. 

The detection of sarcasm in Arabic sentiment analysis, a challenging aspect of language processing, was explored 

by Shah et al. [39]. Their use of probabilistic projections-based variational switch transformers signifies the growing 

interest in handling complex linguistic phenomena within sentiment analysis frameworks. Bie et al. [40] investigated 

the fusion of syntactic structure and lexical semantic information for end-to-end ABSA, emphasizing the importance 

of integrating different linguistic features for comprehensive sentiment analysis. Multimodal sentiment analysis has 

also gained traction, as seen in the works of Xue et al. [41] and Al-Tameemi et al. [42]. These studies utilized multi-

level attention maps and deep multi-view attentive networks, respectively, to analyze sentiment from both text and 

image data, indicating the expanding scope of ABSA to encompass multiple data modalities. Quan et al. [43] 

addressed compound aspect extraction, an area critical for understanding complex aspect relationships in texts. Their 

approach, which involves augmentation and constituency lattices, contributes to the sophistication of aspect 

extraction techniques in ABSA. Razali et al. [44] applied ABSA to the domain of political security, showcasing the 

versatility of sentiment analysis in varied fields, including public safety and governance sets. Wei et al. [45] explored 

the modeling of self-representation label correlations for textual aspects and emoji recommendations, an innovative 

approach linking textual sentiment analysis with visual emoji representations. Zhao et al. [46] introduced shared-

private memory networks for multimodal sentiment analysis, further advancing the capabilities of ABSA models to 

handle diverse data types effectively. 

Diagnostic classifiers for explaining neural models with hierarchical attention in ABSA were developed by Geed et 

al. [47], contributing to the field of explainable AI in sentiment analysis. This research underscores the growing 

need for transparency and interpretability in machine learning models, especially in applications involving human 

sentiment. Ethical considerations in affective computing were discussed by Devillers and Cowie [48], highlighting 
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the ethical implications and responsibilities in the development and application of sentiment analysis technologies. 

Chen et al. [49] introduced inter-intra modal representation augmentation with a trimodal collaborative 

disentanglement network, a novel approach to enhancing model performance in multimodal sentiment analysis. 

Finally, Cheng et al. [50] proposed Seq2CASE, a weakly supervised approach for commentary aspect score 

estimation in recommendation systems. This study illustrates the potential of ABSA in generating nuanced and 

context-aware recommendations based on user-generated content sets. To further enhance efficiency of existing 

ABSA processes & models, next section discusses design of an efficient multidomain sentiment analysis model, 

that works across spatial & temporal scenarios. 

III. PROPOSED DESIGN OF AN EFFICIENT MODEL THAT INTEGRATES RULE MINING AND 

DEEP LEARNING FOR ENHANCED ASPECT-BASED SENTIMENT ANALYSIS ACROSS 

DIVERSE DOMAINS 

To overcome issues of low efficiency & high complexity as discussed in the review of existing models, this section 

discusses an advancement in Aspect-Based Sentiment Analysis (ABSA), by blending rule-based mining techniques 

with deep learning to navigate the intricate landscape of sentiment analysis. As per figure 1, the proposed model 

employs a dual-pathway approach, where one path processes input data through a finely-tuned, pre-trained BERT 

model for transfer learning, while the other path applies domain-specific rule mining for structured insight 

extraction. These parallel streams converge, feeding into a sophisticated deep learning pipeline that integrates Bi-

LSTM, BiGRU-CRF, and RNN layers, adept at capturing sequential data relationships and complex semantic 

contexts. The model also features ontology mapping operations, further refining its semantic understanding 

operations.  

The Rule Mining component of the RMDEASD model, employs FPMax algorithm for generating domain-specific 

rules. This segment of the model plays a crucial role in the initial extraction of structured insights from the collected 

datasets, which are pivotal for the subsequent deep learning stages. Initially, the model begins by constructing a 

Frequent Pattern (FP) tree from the input dataset samples. Given a collection of data D, comprising numerous text 

samples, each sample di in D is split into a set of items (words or phrases) 𝑑𝑖 =  {𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, . . . , 𝑖𝑡𝑒𝑚𝑛} sets. 

The FP tree is constructed by calculating the frequency of each item across the dataset and organizing them in 

descending order of their frequency via equation 1, 

𝐹(𝑖𝑡𝑒𝑚(𝑗)) =  𝛴 [𝐼(𝑖𝑡𝑒𝑚(𝑗)  ∈  𝑑(𝑖))] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑(𝑖) 𝑖𝑛 𝐷 … (1)  

Where, I(x) is an indicator function that returns 1 if x is true, and 0 in other scenarios. Once the FP tree is established, 

the FPMax algorithm is applied to extract the maximal frequent itemsets & samples. Maximal frequent itemsets are 

the largest itemsets in the FP tree which are frequent but none of their immediate supersets are frequent. The 

frequency of an itemset S in the dataset D, represented as F(S), is calculated as the minimum frequency of the items 

in S via equation 2, 

𝐹(𝑆)  =  𝑚𝑖𝑛 {𝐹(𝑖𝑡𝑒𝑚) | 𝑖𝑡𝑒𝑚 ∈  𝑆} … (2) 

The threshold for an itemset to be considered frequent, represented as τ, is predefined based on the dataset's 

characteristics. An itemset S is deemed frequent if 𝐹(𝑆)  ≥  𝜏 for different value sets. The FPMax algorithm 

iteratively explores the FP tree to find all itemsets that accommodate these conditions. The domain-specific rules 

are then generated from these maximal frequent itemsets & samples. A rule R is defined as an implication of the 

form 𝐴 →  𝐵, where A and B are itemsets and 𝐴 ∩  𝐵 =  ∅ indicating no commonality between the sets. The 

confidence of a rule, Conf(R), which is a measure of the rule's strength, is calculated as via equation 3, 

𝐶𝑜𝑛𝑓(𝐴 →  𝐵) =
𝐹(𝐴 ∪  𝐵)

𝐹(𝐴)
… (3) 

The model selects rules that have confidence values exceeding a predefined confidence threshold, δ, ensuring that 

only the most reliable rules are considered for analysis via equation 4, 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑅𝑢𝑙𝑒𝑠 =  {𝑅 | 𝐶𝑜𝑛𝑓(𝑅)  ≥  𝛿} … (4) 

Further, the lift value is estimated, which measures how much more often the antecedent and consequent of a rule 

A → B occur together than expected if they were statistically independent, is calculated via equation 5, 



J. Electrical Systems 20-3s (2024): 1163-1192 

1168 

𝐿𝑖𝑓𝑡(𝐴 →  𝐵) =
𝐶𝑜𝑛𝑓(𝐴 →  𝐵)

𝐹(𝐵)
… (5) 

Rules with high lift values indicate a strong association between A and B and are particularly useful for ABSA 

operations. The model then filters these rules based on their relevance to the specific domain, ensuring that the 

extracted rules are not only statistically significant but also contextually relevant. Finally, the output of this rule 

mining process is a set of domain-specific rules that accurately capture the nuances and contexts relevant to the 

dataset & samples. These rules form the foundation upon which the subsequent deep learning layers build, ensuring 

that the model's sentiment analysis is grounded in structured, domain-specific insights for different use cases. 

Parallelly, the utilization of a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model 

within the RMDEASD framework embodies an advanced approach for domain-specific rule generation via transfer 

learning operations. This component of the model intricately transforms the input datasets into a rich feature set, 

leveraging the deep contextual understanding inherent in BERT’s analysis. The initial process involves tokenizing 

the input dataset D, which comprises a collection of text samples 𝑑𝑖 for different use cases. Each sample 𝑑𝑖 is 

tokenized into a sequence of tokens 𝑇𝑖 =  {𝑡1, 𝑡2, . . . , 𝑡𝑚}, where 𝑚 is the length of the sequence after tokenization 

process. The tokenization process is governed by BERT's WordPiece tokenization method, which splits words into 

a set of known subwords, enabling the handling of unknown words efficiently via equation 6, 

𝑇(𝑖) =  𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑑(𝑖)), 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑(𝑖)𝑖𝑛 𝐷 … (6) 

Each tokenized sequence 𝑇(𝑖) is then processed through BERT’s embedding layer to obtain a dense vector 

representation. The embedding layer combines token embeddings, segment embeddings, and position embeddings, 

formulated via equation 7, 

𝐸(𝑇(𝑖)) =  𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑒𝑑(𝑇(𝑖)) +  𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐸𝑚𝑏𝑒𝑑(𝑇(𝑖)) +  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐸𝑚𝑏𝑒𝑑(𝑇(𝑖)) … (7) 

Where, 𝐸(𝑇(𝑖)) represents the embedded representation of the tokenized sequence 𝑇(𝑖) sets. The embedded 

sequences are fed into the BERT model's multi-layer bidirectional Transformer encoder process. Given a BERT 

model with L layers, each layer l (1 ≤ l ≤ L) in the encoder applies self-attention and feed-forward neural networks 

to process the input sequence sets.  

 

Figure 1.1. Overall flow of the proposed model for Spatial & Temporal ABSA 
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The output of each layer Ol is computed via equation 8, 

𝑂(𝑙) =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐿𝑎𝑦𝑒𝑟𝑙(𝑂{𝑙 − 1}), 𝑤𝑖𝑡ℎ 𝑂0 =  𝐸(𝑇𝑖) … (8) 

The self-attention mechanism in each 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐿𝑎𝑦𝑒𝑟 allows the model to weigh the importance of different 

tokens within the sequence, capturing the context more effectively for different tokens. The attention score 𝐴{𝑙, 𝑗𝑘} 

for a token j with respect to token k in layer l is calculated via equation 9, 

𝐴{𝑙, 𝑗𝑘} =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝑗 ·
𝐾𝑘𝑇

 √𝑑𝑘
) … (9) 

Where, Qj and Kk are query and key vectors for tokens j and k, respectively, and dk is the dimensionality of the key 

vectors for different use cases. The final layer's output OL is used to obtain the contextualized token representations. 

However, for sequence-level tasks, only the output corresponding to the first token (often represented as [CLS] in 

BERT) is utilized for these scenarios. This output, represented as C(Ti), encapsulates the entire sequence's 

contextual information via equation 10, 

𝐶(𝑇𝑖) =  𝑂𝐿[𝐶𝐿𝑆] … (10) 

The model then applies a task-specific linear layer on top of the BERT encoder to generate domain-specific features. 

This layer, parameterized by weights W and bias b, maps the contextualized representation C(Ti) to a feature space 

F(Ti) tailored for the domain-specific rule generation via equation 11, 

𝐹(𝑇𝑖) =  𝑊 ·  𝐶(𝑇𝑖) +  𝑏 … (11) 

The output of this linear layer F(Ti) represents the BERT features for the input sequence Ti, capturing the deep 

contextual nuances essential for effective sentiment analysis in the target domain sets. This integration of an efficient 

pre-trained BERT model for transfer learning in the RMDEASD framework marks a significant stride in harnessing 

deep contextual embeddings for domain-specific rule generation process. Through an efficient & meticulous process 

involving tokenization, embedding, multi-layered transformation, and task-specific feature generation, the model 

adeptly transforms raw textual data into a feature set rich in contextual information sets. These BERT features lay 

the groundwork for the subsequent stages of the RMDEASD model, ensuring a profound understanding of the 

underlying sentiments in the data, pivotal for nuanced and accurate sentiment analysis. 

In the proposed model, the integration of Bidirectional Long Short-Term Memory (BiLSTM), Bidirectional Gated 

Recurrent Unit (BiGRU), and Conditional Random Field (CRF) layers on top of BERT components plays a crucial 

role in feature analysis and extraction process. This complex amalgamation is designed to enhance the model's 

ability to analyze and interpret the rich contextual features provided by BERT, leading to a more nuanced 

understanding of sentiments within the data samples. Upon receiving the output from the BERT model, represented 

as a sequence of feature vectors 𝐹(𝑇𝑖) for each tokenized input sequence Ti, the proposed model employs a BiLSTM 

layer to process these features. The BiLSTM layer comprises two LSTM units that process the sequence in both 

forward and backward scopes, capturing the contextual information from past (backward LSTM) and future 

(forward LSTM) tokens for each token in the sequences. The output of the BiLSTM layer for a token at position j 

in the sequence, represented as Bj, and is estimated via equation 12, 

𝐵𝑗 =  𝐿𝑆𝑇𝑀𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝐹(𝑇{𝑖, 𝑗})) ⊕  𝐿𝑆𝑇𝑀𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝐹(𝑇{𝑖, 𝑗})) … (12) 

Where, ⊕ represents vector concatenation process. Subsequently, the output of the BiLSTM layer is fed into a 

BiGRU layer process. Similar to the BiLSTM, the BiGRU layer consists of two GRU units processing the data in 

both scopes. The BiGRU layer refines the contextual information, enhancing the feature representation process. The 

output of the BiGRU layer for a token at position j, represented as Gj, and is estimated via equation 13, 

𝐺𝑗 =  𝐺𝑅𝑈𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝐵𝑗) ⊕  𝐺𝑅𝑈𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝐵𝑗) … (14) 

The outputs from the BiLSTM and BiGRU layers are then fused to form a comprehensive feature representation for 

each of the tokens. This fusion, denoted as FGj, is achieved by combining the outputs Bj and Gj, through an efficient 

concatenation via equation 15, 

𝐹𝐺𝑗 = [𝐵𝑗, 𝐺𝑗] … (15) 
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Upon obtaining the fused features FGj for each token, the proposed model applies a CRF layer process. The CRF 

layer is utilized for sequence tagging tasks, leveraging the sequential nature of the data to predict a label for each 

token in the sequence sets. The CRF layer computes a score for a sequence of labels 𝐿 =  {𝑙1, 𝑙2, . . . , 𝑙𝑚} given the 

fused features FG, via equation 16, 

𝑆𝑐𝑜𝑟𝑒(𝐿, 𝐹𝐺)  =  ∑

{𝑚}

{𝑗=1}

(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒(𝑙{𝑗 − 1}, 𝑙𝑗)  +  𝐹𝐺{𝑗, 𝑙𝑗}) … (16) 

Where, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒(𝑙{𝑗 − 1}, 𝑙𝑗) is the transition score from label 𝑙{𝑗 − 1} to 𝑙𝑗, and 𝐹𝐺{𝑗, 𝑙𝑗} is the feature 

score for label lj at position j sets. The final step in the process involves the application of the Viterbi algorithm to 

find the most likely sequence of labels for a given input sequences. The Viterbi algorithm maximizes the score 

function over all possible label sequences, providing the optimal label sequence L* via equation 17, 

𝐿 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝐿{𝑆𝑐𝑜𝑟𝑒(𝐿, 𝐹𝐺)} … (17) 

The output of this process is a sequence of labels for each token in the input sequence, representing the sentiment 

or aspect category associated with each of the tokens. This output forms the fused BiLSTM, BiGRU, and CRF 

features, which encapsulate a rich and nuanced understanding of the sentiments and aspects present in the input data 

samples. This integration of BiLSTM, BiGRU, and CRF layers on top of BERT features enables a sophisticated 

analysis of contextual sentiment and aspect information sets. Through a series of complex transformations and 

sequence modeling techniques, the model effectively captures and interprets the subtleties inherent in natural 

language, leading to a more accurate and refined sentiment analysis. This comprehensive feature analysis process 

is pivotal in ensuring that the RMDEASD model achieves a high level of performance in Aspect-Based Sentiment 

Analysis tasks. 

Similarly, the Ontology Mapping with Recurrent Neural Network (RNN) component is another mechanism 

designed to fuse rule-derived features with deep learning-generated features, ultimately categorizing sentiments into 

specific aspects. This process is crucial for the model’s ability to deliver nuanced and precise Aspect-Based 

Sentiment Analysis (ABSA). The process initiates with the fused feature set, derived from the BiLSTM, BiGRU, 

and CRF layers. Let us represent this fused feature set for each token in a sequence as 𝐹𝑓𝑢𝑠𝑒𝑑 =  {𝐹1, 𝐹2, . . . , 𝐹𝑚}, 

where Fi represents the fused feature vector for the ith token in the sequence sets. Concurrently, the model employs 

rule-based features extracted via domain-specific rule mining, represented as 𝐹𝑟𝑢𝑙𝑒𝑠 =  {𝑅1, 𝑅2, . . . , 𝑅𝑛}, where 

Ri corresponds to the feature vector derived from the ith rule sets. 

The fusion of these two feature sets is accomplished through a concatenation operation, followed by processing 

through an RNN layer process. The RNN is adept at capturing sequential dependencies and contextual nuances, 

further enriching the feature representation process. The concatenated feature vector Ci for the ith token is given via 

equation 18, 

𝐶𝑖 =  𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑓𝑢𝑠𝑒𝑑(𝑖), 𝐹𝑟𝑢𝑙𝑒𝑠(𝑖)) … (18) 

Where, 𝐶𝑜𝑛𝑐𝑎𝑡(·,·) represents the concatenation process. The RNN processes these concatenated vectors 

sequentially, updating its hidden state 𝐻𝑖 at each step based on the current input 𝐶𝑖 and the previous hidden state 

𝐻{𝑖 − 1} via equation 19, 

𝐻𝑖 =  𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐶𝑖, 𝐻{𝑖 − 1}) … (19) 

Subsequently, the Ontology Mapping phase commences which maps the RNN output to an ontology that defines 

various aspects and their respective sentiments. Each aspect in the ontology is associated with a set of keywords or 

phrases, and the mapping is performed based on the semantic closeness of the RNN output to these keywords. Let 

A = {A1, A2, ..., Ak} be the set of aspects defined in the ontology sets. The mapping score 𝑀(𝑖, 𝑗) for the ith token 

and the jth aspect is calculated via equation 20, 

𝑀(𝑖, 𝑗) =  𝐶𝑜𝑟𝑟(𝐻𝑖, 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝐴𝑗)) … (20) 

Where, 𝐶𝑜𝑟𝑟(𝑥, 𝑦) measures the semantic similarity between the RNN output and the aspect keywords. The aspect 

with the highest mapping score for each token is then selected, and the corresponding sentiment is determined based 
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on the sentiment polarity associated with the aspect in the ontology sets. The sentiment class Si for the i-th token is 

determined via equation 21, 

𝑆𝑖 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑗(𝑀𝑖, 𝑗) … (21) 

And the associated sentiment polarity 𝑃𝑖 is derived based on the ontology’s sentiment association for the chosen 

aspect. The final output of this process is a set of aspect-sentiment pairs for each token in the sequence, effectively 

categorizing the sentiments into specific aspects based on the rich feature set and the ontology mapping process. 

This output encapsulates the model’s capability to not only analyze sentiments but also to attribute them accurately 

to distinct aspects within the text. This Ontology Mapping with RNN component of the proposed model represents 

a critical juncture where rule-based insights and deep learning features coalesce, guided by a semantic ontology 

process. This fusion results in a sophisticated mechanism that categorizes sentiments into well-defined aspects, 

underpinning the model’s prowess in conducting fine-grained and contextually aware ABSA. This comprehensive 

process ensures that the RMDEASD model stands as a robust and nuanced tool for sentiment analysis, capable of 

dissecting and interpreting complex sentiment expressions with remarkable precision. 

Next, the Output Check and Update Model Parameters operations are iteratively & meticulously integrated to 

optimize the results by refining the model metrics based on feedback loops. This stage is pivotal in enhancing the 

model's accuracy and precision in Aspect-Based Sentiment Analysis (ABSA). The process, rich in technical 

intricacies, is articulated through a series of concrete mathematical operations. Upon receiving the aspects and their 

respective sentiments as input, the model initially performs an Output Check to evaluate the accuracy of these 

predictions. Let, 𝐴 =  {𝐴1, 𝐴2, . . . , 𝐴𝑘} be the set of aspects identified, and 𝑆 =  {𝑆1, 𝑆2, . . . , 𝑆𝑘} be the 

corresponding sentiments. The model computes the accuracy metric for each aspect-sentiment pair by comparing 

the predicted sentiment 𝑆𝑖 with the ground truth sentiment 𝐺𝑖 via equation 22, 

𝐴𝑐𝑐𝑖 =  𝐼(𝑆𝑖 =  𝐺𝑖) … (22) 

Where, 𝐼(𝑥) is an indicator function that returns 1 if the condition x is true, else 0 for other cases. The overall model 

accuracy Acc is then determined by averaging the accuracies over all aspect-sentiment pairs via equation 23, 

𝐴𝑐𝑐 =  (
1

𝑘
) ∑

𝑘

𝑖=1 

𝐴𝑐𝑐(𝑖) … (23) 

Following the accuracy computation, the model performs parameter updates to optimize its performance levels. The 

parameter update is conducted using backpropagation, a standard method in neural networks for updating the 

weights in response to the error observed for different use cases. The error Ei for each aspect-sentiment pair is 

computed as the difference between the predicted sentiment Si and the ground truth Gi via equation 24, 

𝐸𝑖 =  𝐺𝑖 −  𝑆𝑖 … (24) 

The model then calculates the gradients of the error with respect to the model parameters (weights W and biases b) 

and updates the parameters to minimize the error levels. The gradient ∇WE and ∇bE are computed using the chain 

rule of differentiation via equations 25 & 26, 

𝛻𝑊𝐸 =
𝜕𝐸

𝜕𝑊
 =  (

1

𝑘
) ∑

𝜕𝐸𝑖

𝜕𝑊
… (25) 

𝛻𝑏𝐸 =
𝜕𝐸

𝜕𝑏
 =  (

1

𝑘
) ∑

𝜕𝐸𝑖

𝜕𝑏
… (26) 

The model parameters are then updated using a learning rate η, where the new weights W' and biases b' are estimated 

via equations 27 & 28 as follows 

𝑊′ =  𝑊 −  𝜂𝛻𝑊𝐸 … (27) 

𝑏′ =  𝑏 −  𝜂𝛻𝑏𝐸 … (28) 
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This process of error computation, gradient calculation, and parameter updating is repeated iteratively across 

multiple epochs until the model converges, i.e., until the change in error or accuracy between epochs falls below an 

augmented set of pre-defined thresholds. The convergence condition is represented via equation 29, 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒 =  |𝐴𝑐𝑐(𝑡 + 1) −  𝐴𝑐𝑐(𝑡)| <  𝜀 … (29) 

Where, 𝐴𝑐𝑐(𝑡) and 𝐴𝑐𝑐(𝑡 + 1) are the accuracies at consecutive epochs, and ε is a small convergence threshold 

used to reduce error levels. Upon reaching convergence, the model's parameters are considered optimized, and the 

final model is capable of delivering improved predictions on aspect-sentiment pairs. This optimization process 

ensures that the RMDEASD model continually adapts and enhances its performance, leading to more accurate and 

reliable sentiment analysis. 

These sentiments are converted into temporal variables, and then processed using VARMAx (Vector Autoregressive 

Moving Average with exogenous inputs) operations for Temporal Aspect-Based Sentiment Analysis (ABSA), 

proficiently producing temporal sentiments. This process is crucial for understanding how sentiments evolve over 

time and react to various external factors.  The VARMAx model is a multivariate time series forecasting method 

that extends the ARMA (Autoregressive Moving Average) model by considering multiple interdependent time 

series and external factors. Given a set of time-series data representing sentiments associated with various aspects 

over time, let Y(t) be a vector of these time series at time t, where each element of Y(t) corresponds to the sentiment 

score of a particular aspect at time t, which is estimated via equation 30, 

𝑌𝑡 =  𝛷1𝑌{𝑡 − 1} +  𝛷2𝑌{𝑡 − 2}+ . . . + 𝛷𝑝𝑌{𝑡 − 𝑝} +  𝛩1𝜀{𝑡 − 1} +  𝛩2𝜀{𝑡 − 2}+ . . . + 𝛩𝑞𝜀{𝑡 − 𝑞} +  𝛯𝑋𝑡 

+  𝜀𝑡 … (30) 

Where, Φi (i = 1, ..., p) are the autoregressive (AR) coefficients, Θj (j = 1, ..., q) are the moving average (MA) 

coefficients, Ξ is the matrix of coefficients for exogenous inputs Xt (such as external events or other factors 

influencing sentiment), and εt is the error term at time t for different scenarios. The AR component (ΦiY{t-i}) 

captures the influence of past sentiment values on the current sentiment, while the MA component (Θjε{t-j}) 

accounts for the relationship between the past errors and the current sentiments. The exogenous component (ΞXt) 

allows the model to incorporate the impact of external factors on sentiment evolution sets. To estimate the 

parameters (Φi, Θj, Ξ), the model employs a maximum likelihood estimation process. The likelihood function L, 

given the observed time series Y and exogenous inputs X, is maximized to find the optimal parameter values & 

scenarios. This is typically achieved using numerical optimization techniques, and the estimated parameters are 

represented as Φ̂i, Θ̂j, Ξ̂ for different scenarios. 

The model's predictive capability is evaluated using a rolling-window forecast approach, and for a forecast horizon 

h, the predicted sentiment Ŷ{t+h} is calculated via equation 31, 

Ŷ{𝑡 + ℎ} =  𝛷̂1𝑌{𝑡 + ℎ − 1}+ . . . + 𝛷̂𝑝𝑌{𝑡 + ℎ − 𝑝} +  𝛩̂1𝜀̂{𝑡 + ℎ − 1}+ . . . + 𝛩̂𝑞𝜀̂{𝑡 + ℎ − 𝑞}

+  𝛯̂𝑋{𝑡 + ℎ} … (31) 

Where, ε̂{t+h-j} represents the estimated error terms, and X{t+h} are the known exogenous inputs for the forecast 

horizons. The accuracy of the model's predictions is assessed using Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) via equations 32 & 33, 

𝑀𝐴𝐸 =  (
1

𝑁
) ∑

𝑡

|𝑌𝑡 −  Ŷ𝑡|  … (32) 

𝑅𝑀𝑆𝐸 =  √(
1

𝑁
) ∑

𝑡

(𝑌𝑡 −  Ŷ𝑡)
2

… (33) 

Where, N is the number of observations. Thus, the VARMAx process within the proposed framework is an intricate 

and dynamic mechanism for predicting temporal sentiments. Through an efficient fusion of AR, MA, and exogenous 

components, the model adeptly captures the complex interplay of past sentiments, errors, and external influences, 

yielding forecasts that reflect the evolving nature of sentiments over temporal instance sets. This process not only 

enhances the model's temporal analytic capabilities but also provides insightful foresight into sentiment trends, 
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crucial for informed decision-making in various applications, from marketing to public opinion tracking operations. 

Efficiency of these operations are estimated in terms of different scenarios, and compared with existing models in 

the next section of this text. 

IV. RESULT EVALUATION 

The proposed model stands as a pioneering advancement in the field of Aspect-Based Sentiment Analysis (ABSA), 

adeptly integrating rule mining with state-of-the-art deep learning techniques to address the nuanced complexities 

of sentiment expression in textual data. At its core, the proposed model harnesses the power of deep learning 

Transformers, renowned for their efficacy in extracting structured, domain-specific insights, which is further 

augmented by a hybrid architecture combining Bi-LSTM, BiGRU-CRF with RNNs, and sophisticated ontology 

mapping operations. This innovative amalgamation enables RMDEASD to adeptly capture both sequential data 

relationships and intricate semantic contexts, thereby significantly enhancing the precision and contextual 

understanding of sentiments across diverse domains. Notably, the model's cross-domain transfer learning 

capabilities, leveraging pre-trained BERT models with additional contextual layers, allow it to excel in generalizing 

across various contexts, showcasing its versatility. Furthermore, RMDEASD's tailored evaluation metrics, including 

domain-specific accuracy, recall, and precision, ensure a more accurate assessment of its performance in specific 

domains, making it a highly effective tool for comprehensive and dynamic sentiment analysis in real-world 

applications. 

This section initially details the experimental setup used to evaluate the performance of the RMDEASD model for 

Aspect-Based Sentiment Analysis (ABSA). The primary focus is on analyzing spatial and temporal sentiments 

across diverse domains. The experimental setup is designed to comprehensively assess the model's precision, 

accuracy, recall, specificity, delay, and AUC (Area Under the Curve). 

Datasets 

The evaluation of RMDEASD involved an extensive range of datasets to ensure the robustness and versatility of 

the model across different contexts: 

● Yelp Review Dataset: Utilized for spatial sentiment analysis, this dataset comprises customer reviews of 

various businesses, providing rich textual content for aspect-based sentiment evaluation. 

● Amazon Product Reviews: Another dataset for spatial sentiment analysis, containing user reviews for a 

wide range of products, offering insights into consumer sentiments and opinions. 

● Twitter Dataset: Employed for both spatial and temporal sentiment analysis, this dataset includes tweets 

from specific industries like finance and healthcare, capturing real-time public opinions and reactions. 

● IMDB Movie Reviews: Used for spatial sentiment analysis, this dataset consists of user reviews for 

movies, providing a basis for evaluating the model’s performance in entertainment-related contexts. 

● TripAdvisor Hotel Reviews: Applied for spatial sentiment analysis, including customer reviews of hotels, 

useful for gauging sentiments in the hospitality sectors. 

● Longitudinal Social Media Datasets: These datasets, representing a temporal sentiment analysis setup, 

encompass social media posts over multiple years, allowing the examination of sentiment evolution over temporal 

instance sets. 

Input Parameters 

The experimental setup involved configuring various input parameters for the RMDEASD model: 

● Learning Rate: Set at 0.001 for initial experiments and adjusted based on dataset complexity. 

● Batch Size: Varied between 32 and 128, depending on the dataset size. 

● Epochs: Ranged from 10 to 50, with larger datasets requiring more epochs for thorough training. 
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● Bi-LSTM Layers: Configured with 128 units per layer. 

● BiGRU-CRF with RNNs: GRU units were set to 100, with a dropout rate of 0.5 to prevent overfitting. 

● Ontology Mapping Operations: Customized for each dataset based on the domain-specific vocabulary 

and sentiment expressions. 

● Transformer Model: Utilized a pre-trained BERT model, fine-tuned for each dataset. 

● Cross-Domain Transfer Learning: Applied to datasets with diverse domain characteristics, using a 

transfer learning approach with additional layers for contextual semantics. 

Values for Experiments 

For each dataset, the RMDEASD model was configured with the above parameters, and the following sample values 

were used in the initial experiments, 

● Yelp Review Dataset: Learning Rate = 0.001, Batch Size = 64, Epochs = 20 

● Amazon Product Reviews: Learning Rate = 0.001, Batch Size = 32, Epochs = 30 

● Twitter Dataset: Learning Rate = 0.0012, Batch Size = 128, Epochs = 25 

● IMDB Movie Reviews: Learning Rate = 0.001, Batch Size = 64, Epochs = 15 

● TripAdvisor Hotel Reviews: Learning Rate = 0.001, Batch Size = 32, Epochs = 20 

● Longitudinal Social Media Datasets: Learning Rate = 0.0015, Batch Size = 128, Epochs = 50 

These experimental setups were designed to rigorously test the RMDEASD model across various scenarios, 

providing comprehensive insights into its performance and capabilities in ABSA process. Based on this setup, 

equations 34, 35, and 36 were used to assess the precision (P), accuracy (A), and recall (R), levels based on this 

technique, while equations 37 & 38 were used to estimate the overall precision (AUC) & Specificity (Sp) as follows, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
… (34) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
… (35) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
… (36) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 … (37) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
… (38) 

There are three different kinds of test set predictions: True Positive (TP) (number of events in test sets that were 

correctly predicted as positive), False Positive (FP) (number of instances in test sets that were incorrectly predicted 

as positive), and False Negative (FN) (number of instances in test sets that were incorrectly predicted as negative; 

this includes Normal Instance Samples). The documentation for the test sets makes use of all these terminologies. 

To determine the appropriate TP, TN, FP, and FN values for these scenarios, we compared the projected Sentiment 

Class Instance likelihood to the actual Sentiment Class Instance status in the test dataset samples using the Dense 

Concatenation Memory Network (DCMN) [8], Knowledge Graph Augmented Network (KGAN) [19], and 

Multilevel Attention Map Network (MAMN) [41] techniques. As such, we were able to predict these metrics for 

the results of the suggested model process. The precision levels based on these assessments are displayed as follows 

in Figure 2, 
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Figure 2. Observed Precision to convert given sentences into Spatial Aspect Based Sentiments 

In the comparative analysis of observed precision in converting sentences into spatial aspect-based sentiments, 

RMDEASD demonstrates a consistently superior performance across various sample sizes (NTS) compared to other 

models like DCMN [8], KGAN [19], and MAMN [41]. The precision percentages (P%) illustrate this trend clearly. 

For instance, at 24k NTS, RMDEASD achieves an impressive precision of 95.68%, significantly outperforming 

DCMN's 87.30%, KGAN's 75.91%, and MAMN's 76.48%. This high precision indicates RMDEASD's robust 

capability in accurately identifying and analyzing aspect-based sentiments in smaller datasets. The model's 

efficiency at this scale suggests its suitability for applications where quick and precise sentiment analysis is required 

on limited data. 

As the number of testing sentiment samples increases, RMDEASD maintains a high level of precision, exemplified 

by its performance at 80k NTS, where it records a precision of 96.38%. This is markedly higher than the 85.92% of 

DCMN, 78.41% of KGAN, and 74.80% of MAMN. This indicates RMDEASD's scalability and effectiveness in 

handling larger datasets without a significant loss in accuracy. This trait is particularly beneficial in scenarios 

involving extensive data, such as comprehensive market analysis or large-scale social media sentiment tracking. 

Interestingly, at 88k NTS, RMDEASD's precision slightly decreases to 93.01%, but it still outperforms other models 

like KGAN, which stands at 84.11%. This slight decrease could be attributed to the increasing complexity and 

variability inherent in larger datasets. However, RMDEASD's ability to maintain a high precision level highlights 

its robustness and the effectiveness of its underlying algorithms in managing complex data structures. 

At the highest observed sample size of 352k NTS, RMDEASD achieves a precision of 95.27%, once again 

outperforming the other models. This enduring high precision in very large datasets underscores the model's capacity 

to process and analyze vast amounts of data while maintaining high accuracy, a critical requirement for real-time 

sentiment analysis in dynamic environments such as financial markets or public opinion research during significant 

events. 

The superior performance of RMDEASD can be attributed to its innovative integration of rule mining with deep 

learning Transformers. This amalgamation allows for precise extraction of structured, domain-specific insights, 

bolstered by the advanced learning capabilities of deep neural networks. The model's use of Bi-LSTM, BiGRU-

CRF with RNNs, and ontology mapping operations further enhances its ability to understand contextual nuances 

and relationships within textual data. This sophisticated architecture, coupled with the model's cross-domain transfer 

learning capabilities, enables RMDEASD to adapt and perform efficiently across various domains and data sizes. 

Similar to that, accuracy of the models was compared in Figure 3 as follows, 
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Figure 3. Observed Accuracy to convert given sentences into Spatial Aspect Based Sentiments 

At 24k NTS (Number of Testing Sentiment Samples), RMDEASD exhibits an accuracy of 87.32%, surpassing 

DCMN's 75.58%, KGAN's 67.91%, and MAMN's 75.50%. This higher accuracy early in the sample size spectrum 

suggests that RMDEASD is particularly adept at accurately analyzing sentiments in smaller datasets. For real-time 

scenarios such as monitoring social media reactions during an event, this implies that RMDEASD can provide more 

reliable insights even with limited data, which is essential for rapid response and decision-making. 

As the NTS increases, RMDEASD consistently maintains a high level of accuracy. For instance, at 80k NTS, it 

achieves an accuracy of 89.28%, indicating its robustness in handling larger volumes of data without a significant 

compromise in performance. This is crucial for applications like trend analysis in market research, where large 

volumes of data are analyzed to understand consumer sentiments over time. 

An interesting observation is at 88k NTS, where RMDEASD's accuracy is slightly lower (83.42%) compared to 

KGAN's 86.19%. This slight dip, however, is followed by a significant rebound in larger datasets, as seen at 112k 

NTS where RMDEASD records a high accuracy of 95.20%. This resilience in larger datasets is significant for 

scenarios like analyzing customer feedback across multiple platforms, where data volume and variability are high. 

At the maximum observed NTS of 352k, RMDEASD's accuracy is 88.08%, demonstrating its capacity to handle 

vast datasets efficiently. This is especially important in large-scale sentiment analysis projects, such as analyzing 

national or global public opinion on critical issues. 

The superiority of RMDEASD in terms of accuracy can be attributed to its integration of rule mining with advanced 

deep learning techniques, including Transformers. This combination allows for a nuanced understanding of 

language and context, leading to more accurate sentiment predictions. The model's use of a hybrid architecture, 

including Bi-LSTM, BiGRU-CRF with RNNs, and ontology mapping operations, further enhances its ability to 

understand complex semantic relationships and context, contributing to its high accuracy. 

In real-time applications, the high accuracy of RMDEASD is vital. For businesses, it means more reliable insights 

into customer opinions and market trends, leading to better-informed business decisions. In public opinion research, 

it ensures a more accurate understanding of public sentiment, crucial for policy-making or crisis management. 

Additionally, in social media monitoring, higher accuracy allows for more effective tracking of public reactions, 

essential for brand management and marketing strategies. Similar to this, the recall levels are represented in Figure 

4 as follows, 
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Figure 4. Observed Recall to convert given sentences into Spatial Aspect Based Sentiments 

At 24k NTS (Number of Testing Sentiment Samples), RMDEASD exhibits an outstanding recall of 94.76%, 

significantly surpassing DCMN [8], KGAN [19], and MAMN [41]. This high recall rate at a lower sample size 

indicates that RMDEASD is particularly effective in identifying most of the relevant sentiments from a smaller 

dataset. In real-time scenarios like immediate response to customer feedback on social media, this means 

RMDEASD can capture the vast majority of relevant sentiment expressions, ensuring minimal valuable insights are 

missed. 

As the sample size increases, RMDEASD continues to demonstrate high recall. Notably, at 48k NTS, its recall peaks 

at 97.82%, suggesting exceptional proficiency in identifying relevant sentiments even as the data complexity grows. 

This ability is crucial in large-scale analyses, such as monitoring public opinion during significant events where 

capturing the breadth of public sentiment is vital. 

However, at certain data points, such as at 88k and 152k NTS, there is a noticeable reduction in RMDEASD's recall 

(86.46% and 81.37%, respectively). Despite these dips, RMDEASD's recall rates remain competitive and often 

superior to other models. This fluctuation can be attributed to the increasing diversity and complexity of the data at 

these larger sizes, presenting more challenging scenarios for sentiment identification. 

At the highest observed sample size of 352k NTS, RMDEASD's recall is 88.17%, demonstrating its ability to 

maintain a high recall rate even in extensive datasets. This is essential for scenarios like analyzing long-term trends 

in customer satisfaction or public opinion, where capturing as many relevant sentiments as possible is crucial for 

accurate analysis. 

The high recall rates of RMDEASD can be attributed to its integration of rule mining with advanced deep learning 

techniques, including Transformers. This synergy allows the model to effectively identify and capture a wide range 

of sentiment expressions, including those that are nuanced or context-specific. The use of a hybrid architecture, 

including Bi-LSTM, BiGRU-CRF with RNNs, and ontology mapping operations, further contributes to its ability 

to recognize various sentiment expressions accurately. 

In real-time applications, RMDEASD's high recall is particularly impactful. For businesses, it means more 

comprehensive insights into customer opinions, leading to more informed decision-making and customer 

relationship management. In fields like public opinion research, high recall allows for a more complete 

understanding of public sentiment, crucial for accurately gauging public mood and response. Moreover, in social 

media monitoring, a high recall rate ensures that businesses and organizations do not miss out on critical feedback 

and can respond promptly and appropriately. Figure 5 similarly tabulates the delay needed for the prediction process, 
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Figure 5. Observed Delay to convert given sentences into Spatial Aspect Based Sentiments 

At 24k NTS (Number of Testing Sentiment Samples), RMDEASD shows a minimal delay of 84.31 ms, slightly 

outperforming the other models. This low delay indicates that RMDEASD is highly efficient in quickly processing 

and analyzing smaller datasets. In real-time scenarios, such as live social media monitoring during an event, this 

rapid response capability of RMDEASD is invaluable. It allows for almost immediate sentiment analysis, enabling 

timely reactions to user feedback or public sentiment shifts. 

As the dataset size increases, RMDEASD consistently maintains a competitive delay time. For example, at 64k 

NTS, RMDEASD records a delay of 87.63 ms, which is lower than DCMN's 101.58 ms and KGAN's 92.58 ms. 

This efficiency in processing larger datasets is crucial in applications like continuous tracking of customer sentiment 

in real-time, ensuring that the analysis keeps pace with the incoming data. 

Interestingly, at certain data points, such as at 152k NTS, RMDEASD's delay slightly increases to 87.08 ms. 

However, it remains competitive and often lower than other models. This slight increase in delay could be due to 

the processing of more complex data structures as the dataset size grows. Despite this, RMDEASD’s ability to 

maintain a relatively low delay is a testament to its optimized processing capabilities. 

In the largest observed dataset of 352k NTS, RMDEASD's delay stands at 93.07 ms, indicating that even with vast 

amounts of data, the model can process and analyze sentiments efficiently. This is particularly important in large-

scale data analytics, such as market trend analysis or monitoring public opinion over extended periods, where the 

ability to process large volumes of data quickly is essential. 

The low delay times observed with RMDEASD can be attributed to its integration of rule mining with advanced 

deep learning techniques, which enable efficient data processing and sentiment analysis. The use of efficient 

architectures like Bi-LSTM, BiGRU-CRF with RNNs, and ontology mapping operations, contribute to this quick 

processing capability. 

In practical applications, RMDEASD's low delay in sentiment analysis is highly advantageous. For businesses, it 

means real-time insights into customer feedback, enabling prompt and effective responses. In media monitoring and 

public opinion analysis, the quick processing allows for real-time tracking of sentiment trends, crucial for 

understanding public reaction during major events or crises. Similarly, the AUC levels can be observed from figure 

6 as follows, 
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Figure 6. Observed AUC to convert given sentences into Spatial Aspect Based Sentiments 

The observed Area Under the Curve (AUC) for converting sentences into spatial aspect-based sentiments reveals 

essential insights into the performance of RMDEASD compared to other models like DCMN [8], KGAN [19], and 

MAMN [41]. AUC, a metric derived from the Receiver Operating Characteristic (ROC) curve, measures a model's 

ability to discriminate between classes—in this case, different sentiment classes. A higher AUC indicates better 

model performance, with a perfect score being 100. 

At the 24k Number of Testing Sentiment Samples (NTS), RMDEASD shows a superior AUC of 84.36, significantly 

higher than DCMN's 65.88, KGAN's 78.12, and MAMN's 60.53. This high AUC at a lower sample size suggests 

RMDEASD's strong discriminative ability in analyzing sentiments accurately in smaller datasets. For real-time 

scenarios like monitoring immediate customer feedback on a new product launch, this implies RMDEASD can 

distinguish between positive and negative sentiments more effectively, allowing for prompt and appropriate 

responses. 

As the NTS increases, RMDEASD maintains a high level of AUC. Notably, at 48k NTS, it achieves an AUC of 

88.09, indicating its strong performance in larger and potentially more complex datasets. This ability is crucial for 

applications like ongoing sentiment analysis in large-scale social media monitoring, where accurately distinguishing 

between varying sentiment intensities and types is key to understanding public opinion dynamics. 

Interestingly, in the mid-range NTS (like at 152k and 216k), RMDEASD experiences slight variations in AUC 

(86.12 and 87.97, respectively), yet it consistently remains higher than the other models. This shows RMDEASD’s 

robustness in maintaining discriminative accuracy across a range of data sizes. 

In the largest dataset observed (352k NTS), RMDEASD records an AUC of 87.71, demonstrating its effectiveness 

in discriminating between different sentiment classes even in extensive datasets. This is particularly important in 

scenarios like analyzing long-term trends in market sentiment or large-scale public opinion surveys, where the 

precision in distinguishing between subtle sentiment variations can provide deeper insights. 

RMDEASD’s high AUC is attributable to its integration of rule mining with deep learning Transformers, which 

enhances its ability to discriminate between different sentiment expressions accurately. The model's advanced 

techniques, including Bi-LSTM, BiGRU-CRF with RNNs, and ontology mapping operations, further contribute to 

this capability, enabling it to handle nuanced and complex sentiment structures effectively. 

In practical applications, RMDEASD’s high AUC is invaluable. For businesses and organizations, it means more 

accurate sentiment analysis, leading to better-informed strategies and decision-making. In public opinion research, 

a high AUC allows for more precise interpretation of public sentiments, essential for policy-making or public 

relations strategies. Additionally, in real-time monitoring scenarios, such as during live events or ongoing social 

media campaigns, the ability to accurately distinguish sentiment tones ensures more effective communication and 

engagement strategies. Similarly, the Specificity levels can be observed from figure 7 as follows, 
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Figure 7. Observed Specificity to convert given sentences into Spatial Aspect Based Sentiments 

At 24k NTS (Number of Testing Sentiment Samples), RMDEASD exhibits a specificity of 84.21%, surpassing 

DCMN's 73.82%, KGAN's 81.86%, and MAMN's 70.73%. This indicates that RMDEASD is particularly effective 

in correctly identifying sentences that do not contain the target sentiment. In real-time scenarios, such as moderating 

online discussions or customer feedback platforms, this means RMDEASD can more accurately filter out irrelevant 

or non-target sentiments, focusing on the most pertinent content. 

As the dataset size increases, RMDEASD maintains a high level of specificity. For instance, at 48k NTS, 

RMDEASD's specificity is 86.04%, indicating its robustness in correctly ignoring non-relevant sentiment 

expressions in larger datasets. This capability is vital in large-scale applications like brand monitoring or public 

opinion tracking over social media, where accurately filtering out noise and unrelated content is crucial for focused 

sentiment analysis. 

However, at certain points, such as at 88k NTS, RMDEASD's specificity slightly decreases to 79.88%. Despite this, 

it remains competitive and often superior to other models. This slight decrease might be due to the increasing 

complexity in larger datasets, where the distinction between relevant and irrelevant sentiments becomes more 

challenging. 

Notably, in the largest dataset observed (352k NTS), RMDEASD records a high specificity of 94.14%, 

demonstrating its effectiveness in maintaining a high level of true negative identification even in extensive datasets. 

This is particularly important in scenarios like analyzing large volumes of customer reviews or social media posts, 

where efficiently filtering out irrelevant content is crucial for effective sentiment analysis. 

RMDEASD’s high specificity can be attributed to its effective combination of rule mining and deep learning 

techniques, including Transformers, which enhances its ability to accurately identify the absence of specific 

sentiments. This precision is further supported by its advanced architecture, including Bi-LSTM, BiGRU-CRF with 

RNNs, and ontology mapping operations. 

In real-time applications, RMDEASD’s high specificity is highly beneficial. For businesses and organizations, it 

means more focused insights from sentiment analysis, enabling them to concentrate on the most relevant feedback 

or opinions. In public opinion research, high specificity allows for more accurate gauging of public mood by 

effectively ignoring irrelevant data. Additionally, in situations requiring immediate response, such as crisis 

management or live event monitoring, the ability to quickly and accurately filter out non-relevant sentiments ensures 

more efficient and targeted responses. Next in this text we discuss the efficiency of the proposed model for analyzing 

temporal sentiments in an effective and comparable way for different scenarios. 
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Efficiency of Temporal Sentiment Analysis 

While the proposed model has better Spatial ABSA efficiency, its Temporal ABSA capabilities must be evaluated 

under real-time conditions. This efficiency was also estimated in terms of precision, accuracy, recall, specificity & 

AUC levels, and compared with Interpretable Multimodal Sentiment (IMS) [42], Compound Aspect Extraction by 

Augmentation and Constituency Lattice (CAECL) [43], & Shared-Private Memory Networks for Multimodal 

Sentiment Analysis (SMNSA) [46] under similar scenarios. For instance, figure 8 showcases the precision observed 

during pre-emption of heart disease conditions for different use cases. 

 

Figure 8. Observed Precision for Temporal ABSA Analysis 

In the realm of Temporal Aspect-Based Sentiment Analysis (ABSA), the proposed model RMDEASD demonstrates 

its efficiency by exhibiting commendable precision across various sample sizes (NTS), compared to other models 

like IMS [42], CAECL [43], and SMNSA [46]. Precision in this context refers to the model’s accuracy in identifying 

relevant sentiments over time, a critical metric in temporal ABSA. 

At the outset, with 24k NTS, RMDEASD shows a precision of 82.09%, outperforming IMS's 78.81%, CAECL's 

76.30%, and SMNSA's 74.76%. This indicates that RMDEASD is more accurate in capturing temporal sentiments 

from the onset, crucial in scenarios where initial sentiment trends need to be identified quickly, such as during 

product launches or in the immediate aftermath of an event. 

As the number of testing samples increases, RMDEASD consistently maintains a high level of precision. For 

example, at 80k NTS, RMDEASD records a precision of 85.35%, surpassing other models. This is significant in 

situations where sentiments evolve over time, like tracking public opinion during an election campaign or analyzing 

customer satisfaction trends over a product life cycle. 

Interestingly, at 88k NTS, RMDEASD reaches a higher precision of 89.26%. This suggests that RMDEASD is not 

only effective in handling larger datasets but also improves its precision as the data volume increases. This 

characteristic is particularly advantageous in long-term sentiment analysis scenarios, such as monitoring brand 

reputation or public policy impacts over extended periods. 

However, at certain data points, like at 112k NTS where the precision dips to 78.23%, RMDEASD experiences a 

slight decrease in its precision. Despite this, RMDEASD’s overall performance remains robust. This variation can 

be attributed to the complexity inherent in larger temporal datasets, where sentiment trends might become more 

intricate and challenging to decipher accurately. 

In the largest observed dataset of 352k NTS, RMDEASD’s precision is 85.56%, indicating its effectiveness in 

maintaining high precision in extensive temporal datasets. This is crucial for applications that require the analysis 

of vast amounts of temporal data, such as tracking long-term market trends or societal changes. 
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The superior performance of RMDEASD in temporal ABSA can be attributed to its integration of rule mining with 

deep learning techniques, including Transformers. This combination allows the model to adapt and respond 

accurately to the nuances of temporal sentiment shifts. The employment of Bi-LSTM, BiGRU-CRF with RNNs, 

and ontology mapping operations in RMDEASD further enhances its ability to understand the sequential and time-

based nuances of sentiment expressions. 

In practical applications, RMDEASD’s high precision in temporal ABSA is highly beneficial. For businesses, it 

means more accurate insights into how customer sentiments evolve over time, enabling them to adapt their strategies 

proactively. In areas like public opinion research, high precision allows for a more accurate understanding of how 

public sentiment shifts in response to events or policies over time. Additionally, in real-time monitoring scenarios, 

such as social media sentiment tracking, the ability to accurately capture sentiment trends ensures more effective 

communication strategies and timely interventions for different use cases. Similar to that, accuracy of the models 

was compared in figure 9 as follows, 

 

Figure 9. Observed Accuracy for Temporal ABSA Analysis 

Starting with a sample size of 24k NTS (Number of Testing Sentiment Samples), RMDEASD exhibits an accuracy 

of 83.40%, surpassing IMS’s 76.45%, CAECL’s 80.66%, and SMNSA’s 76.40%. This indicates that RMDEASD 

is more adept at correctly interpreting sentiments in temporal data from the onset. In real-time scenarios like 

monitoring the immediate impact of a marketing campaign or a public announcement, this high level of accuracy 

ensures that sentiment trends are captured correctly, facilitating timely and appropriate decision-making. 

As the dataset size increases, RMDEASD consistently maintains high accuracy. Notably, at 88k NTS, RMDEASD 

achieves an accuracy of 90.29%, which is significantly higher than the other models. This suggests that RMDEASD 

effectively handles larger datasets, a crucial attribute for long-term sentiment analysis applications such as tracking 

brand perception or public sentiment over extended periods. 

There are instances, such as at 112k NTS where RMDEASD records an accuracy of 82.76%, where a slight decrease 

is observed. However, RMDEASD's performance remains robust across different dataset sizes. This slight 

fluctuation in accuracy can be attributed to the varying complexity in larger temporal datasets, where capturing the 

nuances of sentiment trends might become more challenging. 

In the largest dataset observed (352k NTS), RMDEASD’s accuracy is 89.03%, indicating its effectiveness in 

maintaining high accuracy in extensive temporal datasets & samples. This is particularly important in scenarios like 

analyzing long-term market trends or societal changes, where accurate sentiment analysis over time can provide 

valuable insights for real-time scenarios. 

The high accuracy of RMDEASD in temporal ABSA can be attributed to its integration of rule mining with 

advanced deep learning techniques. This combination allows the model to accurately interpret and analyze temporal 
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sentiment shifts. The use of sophisticated architectures, including Bi-LSTM, BiGRU-CRF with RNNs, and ontology 

mapping operations, enhances its ability to process and understand time-based nuances in sentiment expressions. 

In practical applications, RMDEASD’s high accuracy in temporal ABSA is highly beneficial. For businesses and 

organizations, it means more reliable insights into how customer sentiments evolve over time, enabling proactive 

strategy adjustments. In public opinion research, high accuracy allows for a more precise understanding of how 

public sentiment shifts in response to events or policies over time. Additionally, in real-time monitoring scenarios, 

such as tracking social media sentiment, the ability to accurately capture sentiment trends ensures more effective 

communication strategies and interventions for different scenarios. Similar to this, the recall levels are represented 

in figure 10 as follows, 

 

Figure 10. Observed Recall for Temporal ABSA Analysis 

The observed recall in Temporal Aspect-Based Sentiment Analysis (ABSA) for the proposed model RMDEASD, 

in comparison with IMS [42], CAECL [43], and SMNSA [46], showcases its effectiveness in consistently 

identifying relevant sentiments over time. Recall is a measure of a model's ability to correctly identify all relevant 

instances of a specific sentiment, which is particularly crucial in the temporal analysis of sentiments where trends 

and changes over time are key. 

Starting at 24k NTS (Number of Testing Sentiment Samples), RMDEASD demonstrates a recall of 83.39%, which 

is comparable to IMS's 84.29% but higher than CAECL's 77.71% and SMNSA's 71.50%. This indicates that from 

the onset, RMDEASD is capable of identifying most of the relevant temporal sentiments, which is essential in real-

time scenarios like monitoring immediate reactions to news events or social media trends, where capturing as many 

relevant sentiment expressions as possible is crucial. 

As the number of testing samples increases, RMDEASD maintains a high level of recall. Notably, at 88k NTS, its 

recall rate is 87.27%, indicating that RMDEASD can effectively identify the majority of relevant sentiments even 

as the volume of data increases. This is particularly important in longer-term sentiment analysis applications, such 

as tracking shifts in public opinion or consumer sentiment over extended periods. 

At certain points, such as 128k NTS where the recall is 81.58%, a slight decrease in RMDEASD's recall is observed. 

However, RMDEASD’s performance remains strong, indicating its ability to handle complex temporal data. This 

fluctuation can be attributed to the varying nature of larger datasets, where identifying every relevant sentiment 

expression becomes more challenging. 

In the largest dataset observed (352k NTS), RMDEASD’s recall is 88.21%, showing its effectiveness in capturing 

relevant sentiments in extensive temporal datasets. This high recall is crucial in scenarios such as long-term market 

trend analysis or ongoing social media sentiment tracking, where missing relevant sentiment expressions can lead 

to incomplete or skewed analyses. 
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The high recall rates achieved by RMDEASD can be attributed to its integration of rule mining with advanced deep 

learning techniques, including Transformers, which enhances its ability to identify a wide range of temporal 

sentiment expressions accurately. The use of a sophisticated architecture, including Bi-LSTM, BiGRU-CRF with 

RNNs, and ontology mapping operations, further contributes to its ability to recognize various temporal sentiment 

expressions. 

In practical applications, RMDEASD’s high recall in temporal ABSA is highly advantageous. For businesses and 

organizations, it means more comprehensive insights from sentiment analysis, enabling them to capture a more 

complete picture of customer opinions and market trends. In public opinion research, high recall allows for a more 

thorough understanding of public sentiment over time, essential for accurately gauging public response to events or 

policies. Additionally, in real-time monitoring scenarios, such as during live events or social media campaigns, the 

ability to capture most of the relevant sentiments ensures more effective communication strategies and timely 

interventions for different use cases. Figure 11 similarly tabulates the delay needed for the prediction process, 

 

Figure 11. Observed Delay for Temporal ABSA Analysis 

At the outset with 24k Number of Testing Sentiment Samples (NTS), RMDEASD demonstrates a minimal delay of 

83.10 ms, which is lower than IMS's 97.98 ms, CAECL's 98.38 ms, and SMNSA's 86.18 ms. This low delay suggests 

that RMDEASD is highly efficient at processing and analyzing temporal sentiments quickly, even in smaller 

datasets. In real-time scenarios, such as monitoring sentiment during a live event or immediately after a significant 

announcement, this rapid processing capability allows for almost instant analysis and response, crucial for timely 

decision-making and strategy adjustment. 

As the dataset size increases, RMDEASD maintains a competitive and often superior delay time. For example, at 

64k NTS, RMDEASD's delay is 88.38 ms, which is lower than IMS's 106.42 ms and CAECL's 97.24 ms. This 

efficiency in handling larger datasets is essential in applications like continuous tracking of sentiment over extended 

periods, where delays can accumulate and impact the timeliness of the analysis. 

In certain cases, such as at 184k NTS where RMDEASD records a delay of 95.12 ms, a slight increase is observed. 

However, RMDEASD’s delay remains competitive, suggesting that the model effectively balances processing time 

and accuracy, even in more complex temporal datasets. 

In the largest dataset observed (352k NTS), RMDEASD records a delay of 93.85 ms. This continued efficiency in 

large datasets is particularly important in large-scale data analytics, such as monitoring long-term market trends or 

societal changes, where quick processing of large volumes of data is vital for real-time use cases. 
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RMDEASD’s low delay times can be attributed to its efficient integration of rule mining with advanced deep 

learning techniques, including Transformers. This blend allows for rapid processing of data while maintaining high 

accuracy. The model's sophisticated architecture, including Bi-LSTM, BiGRU-CRF with RNNs, and ontology 

mapping operations, contributes to its ability to process data quickly with better efficiency levels. 

In real-time applications, RMDEASD's low delay in temporal ABSA is highly beneficial. For businesses and 

organizations, it means insights from sentiment analysis are obtained quickly, enabling prompt and effective 

responses. In areas like public opinion research, the quick processing allows for real-time tracking of sentiment 

trends, crucial for understanding public reaction during ongoing events. Additionally, in situations requiring 

immediate response, such as crisis management or live event monitoring, the ability to process and analyze data 

quickly ensures more efficient and targeted responses. Similarly, the AUC levels can be observed from figure 12 as 

follows, 

 

Figure 12. Observed AUC for Temporal ABSA Analysis 

At 24k Number of Testing Sentiment Samples (NTS), RMDEASD shows an impressive AUC of 88.17%, 

significantly higher than IMS’s 81.05%, CAECL’s 76.28%, and SMNSA’s 71.93%. This high AUC from the outset 

suggests RMDEASD’s strong capability in distinguishing between varying sentiment classes in temporal data. In 

real-time scenarios, such as monitoring public reaction to a breaking news event, this means RMDEASD can 

accurately differentiate between positive, negative, and neutral sentiments, essential for understanding the evolving 

public sentiment. 

As the dataset size increases, RMDEASD consistently maintains a high AUC. Notably, at 64k NTS, RMDEASD 

achieves an AUC of 95.71%, indicating its excellent performance in larger and potentially more complex datasets. 

This ability is crucial for long-term applications such as tracking shifts in consumer sentiment over a product 

lifecycle or public opinion during an election campaign, where accurate differentiation between sentiment classes 

over time is key. 

There are instances, such as at 112k NTS, where RMDEASD records an AUC of 88.94%. Though there are slight 

fluctuations, RMDEASD's AUC remains robust, indicating its effectiveness in temporal sentiment classification 

across different dataset sizes. These variations can be attributed to the complexity in larger datasets, where 

distinguishing between subtle sentiment changes becomes more challenging. 

In the largest dataset observed (352k NTS), RMDEASD’s AUC is 86.80%, demonstrating its capacity to effectively 

classify sentiments even in extensive temporal datasets. This is particularly important for large-scale analyses, such 
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as understanding long-term market trends or societal sentiment shifts, where precision in classifying sentiments can 

yield valuable insights. 

The high AUC of RMDEASD in temporal ABSA can be attributed to its integration of rule mining with advanced 

deep learning techniques, which enhances its ability to accurately differentiate between sentiment classes over time. 

The use of sophisticated architectures, including Bi-LSTM, BiGRU-CRF with RNNs, and ontology mapping 

operations, further contributes to this classification accuracy. 

In practical applications, RMDEASD’s high AUC in temporal ABSA is highly beneficial. For businesses, it means 

more accurate sentiment analysis over time, enabling them to understand and respond to customer sentiment trends 

effectively. In public opinion research, a high AUC allows for precise interpretation of public sentiments, essential 

for policy-making or public relations strategies. Additionally, in real-time monitoring scenarios, such as social 

media sentiment tracking, the ability to accurately classify sentiment trends ensures more effective communication 

strategies and timely interventions for different scenarios. Similarly, the Specificity levels can be observed from 

figure 13 as follows, 

 

Figure 13. Observed Specificity for Temporal ABSA Analysis 

At the 24k Number of Testing Sentiment Samples (NTS), RMDEASD demonstrates a high specificity of 89.71%, 

surpassing IMS's 77.94%, CAECL's 80.18%, and SMNSA's 75.12%. This suggests that RMDEASD is highly 

effective in correctly identifying non-relevant temporal sentiments from the beginning. In real-time scenarios, such 

as filtering out non-critical social media posts during a crisis or a high-profile event, this means RMDEASD can 

more accurately focus on the most pertinent temporal sentiments, enhancing the quality of the analysis. 

As the dataset size increases, RMDEASD consistently maintains a high level of specificity. For instance, at 64k 

NTS, RMDEASD records a specificity of 93.45%, which is significantly higher than the other models. This high 

specificity is crucial in applications like ongoing brand monitoring or longitudinal public opinion analysis, where 

accurately ignoring non-relevant sentiments is key to focusing on meaningful sentiment trends over time. 

There are instances, such as at 88k NTS, where RMDEASD's specificity slightly decreases to 88.36%. However, it 

still remains competitive, indicating its robustness in handling complex temporal data. This slight fluctuation can 

be attributed to the increasing diversity in larger datasets, where distinguishing between relevant and irrelevant 

sentiments becomes more challenging. 

In the largest dataset observed (352k NTS), RMDEASD’s specificity is 95.56%, demonstrating its effectiveness in 

maintaining high specificity in extensive temporal datasets. This is particularly important in large-scale analyses, 
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such as tracking long-term market trends or societal changes, where efficiently filtering out irrelevant content is 

crucial for effective sentiment analysis. 

RMDEASD’s high specificity can be attributed to its efficient integration of rule mining with advanced deep 

learning techniques, enhancing its ability to accurately identify the absence of specific temporal sentiments. The 

model's use of sophisticated architectures, including Bi-LSTM, BiGRU-CRF with RNNs, and ontology mapping 

operations, contributes to its ability to process data quickly and accurately. 

In practical applications, RMDEASD’s high specificity in temporal ABSA is highly advantageous. For businesses 

and organizations, it means more focused insights from sentiment analysis, allowing them to concentrate on the 

most relevant feedback or opinions over time. In public opinion research, high specificity allows for more accurate 

gauging of public mood by effectively ignoring irrelevant data. Additionally, in situations requiring immediate 

response, such as crisis management or live event monitoring, the ability to quickly and accurately filter out non-

relevant sentiments ensures more efficient and targeted responses. 

In summary, RMDEASD's consistently high performance across various temporal dataset sizes demonstrates its 

effectiveness in accurately identifying true negatives in sentiment analysis. This capability makes it an invaluable 

tool in a wide range of applications, where filtering out irrelevant temporal sentiment expressions is crucial, from 

real-time monitoring to comprehensive data analysis and decision-making processes. 

Use Case Analysis 

To illustrate the conversion of text samples into Aspect-Based Sentiment Analysis (ABSA) using the RMDEASD 

model, this section discusses different inputs & relevant outputs. Table 1 demonstrates how the model interprets 

and analyzes various text samples, focusing on different aspects and sentiments expressed in each as follows, 

Text Sample (Input) Aspect Identified Sentiment Score Sentiment 

Category 

"The battery life of this phone is amazing, but 

the camera is disappointing." 

Battery Life +0.9 Positive 

 Camera -0.8 Negative 

"Service at the restaurant was top-notch, but the 

food was just average." 

Service +0.85 Positive 

 Food Quality +0.2 Neutral 

"Absolutely love the user-friendly interface of 

the software, though it's a bit pricey." 

Interface +0.95 Positive 

 Price -0.6 Negative 

"The hotel's location is perfect, but the rooms 

need better cleaning." 

Location +0.9 Positive 

 Room Cleanliness -0.7 Negative 

"This movie's storyline was captivating, but the 

acting was unconvincing." 

Storyline +0.88 Positive 

 Acting -0.75 Negative 

"The book offers insightful perspectives, but the 

writing style is too complex." 

Content +0.8 Positive 

 Writing Style -0.5 Negative 

In this table, each row represents a text sample analyzed by the RMDEASD model process. The model identifies 

different aspects within each sample (e.g., "battery life," "camera," "service") and assigns a sentiment score to each 

aspect, reflecting the positivity or negativity of the sentiment expressed for different use cases. The sentiment 

category is determined based on the sentiment score, categorized typically as positive, neutral, or negative sets. 

This tabular output explains how RMDEASD can dissect and interpret complex sentences, accurately identifying 

and analyzing sentiments related to specific aspects within the text. Such capability is invaluable in various 

applications, from product reviews analysis to customer feedback in services, where understanding multifaceted 

sentiments is crucial for businesses and organizations. 
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Further discussing the internal details that showcase the internal processes of the RMDEASD model requires 

detailing each step of the model's operation and the corresponding output for a given text sample under real-time 

scenarios. Table 2 illustrates how the RMDEASD model processes a text sample through its various stages, from 

input to final sentiment analysis, 

Text Sample 

(Input) 

Process Stage Description Output 

"Love the screen 

clarity but not 

happy with the 

battery life." 

Input Data Raw text input for analysis "Love the screen clarity but not happy 

with the battery life." 

 Rule Mining Applying domain-specific 

rules for initial sentiment 

extraction 

Aspects: "screen clarity", "battery 

life”, Preliminary Sentiments: 

Positive for "screen clarity", Negative 

for "battery life" 

 Pre-trained BERT Applying transfer learning for 

context understanding 

Contextual Features Extracted: 

Positive sentiment towards "screen", 

Negative sentiment towards "battery" 

 Feature 

Combination 

Combining rule mining and 

BERT features 

Combined Feature Set: Positive 

sentiment on "screen clarity", 

Negative sentiment on "battery life" 

 Bi-LSTM Layer Processing combined features 

for sequential data 

relationships 

Sequential Context Processed: 

Relation between "screen clarity" and 

positive sentiment, "battery life" and 

negative sentiment 

 BiGRU-CRF 

Layer 

Further refining sentiment 

analysis with sequential and 

context processing 

Enhanced Sentiment Context: 

Refined sentiment association for 

each aspect 

 RNN Layer Processing refined features 

for temporal dependencies 

Temporal Feature Analysis: 

Consistency of sentiment over text 

context 

 Ontology 

Mapping 

Mapping semantic context to 

aspects 

Semantic Aspect Linking: "screen 

clarity" linked to product feature, 

"battery life" linked to product 

performance 

 Output Final sentiment analysis result Aspect-Based Sentiment: "screen 

clarity" - Positive, "battery life" - 

Negative 

Each row in this table represents a stage in the RMDEASD model's process for analyzing a text sample. The model 

begins with the raw text input, applies rule mining for preliminary aspect and sentiment extraction, and then uses a 

pre-trained BERT model for contextual understanding. Features from both stages are combined and processed 

through deep learning layers (Bi-LSTM, BiGRU-CRF, RNN) for enhanced sentiment analysis. Ontology mapping 

adds a semantic layer to the analysis, linking aspects to specific semantic contexts. The final output provides a 

detailed aspect-based sentiment analysis, demonstrating the model's ability to dissect and interpret complex 

sentiment expressions in text. 

V. CONCLUSION AND FUTURE SCOPE 

The RMDEASD model, as explored in this paper, marks a significant advancement in the realm of Aspect-Based 

Sentiment Analysis (ABSA), particularly in the context of spatial and temporal sentiment analysis. The model's 

integration of rule mining with advanced deep learning techniques, including Transformers, has demonstrated 

remarkable improvements in precision, accuracy, recall, and specificity across various dataset sizes. RMDEASD's 

superior performance is evident in its ability to handle both spatial and temporal sentiment data with high efficiency, 

evidenced by its consistently low delay times and high Area Under the Curve (AUC) scores. These attributes have 
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proven essential in scenarios demanding rapid and accurate sentiment analysis, such as real-time social media 

monitoring, market trend analysis, and public opinion research. 

The impacts of RMDEASD are multifaceted. In the business domain, it enables more nuanced and accurate market 

analysis, leading to better-informed decision-making processes. For public opinion research, RMDEASD offers a 

more precise tool for gauging societal sentiments, crucial for policy-making and public relations strategies. 

Additionally, its application in real-time scenarios, such as crisis management or event monitoring, ensures timely 

and relevant responses, enhancing the effectiveness of communication strategies. 

Future Scope 

Looking forward, there are several avenues for expanding the capabilities of the RMDEASD model: 

● Adaptation to Multilingual and Cross-Cultural Contexts: Expanding the model's linguistic capabilities to 

include various languages and dialects can enhance its applicability in global contexts, making it a more versatile 

tool for multinational corporations and international organizations. 

● Integration with Other Data Types: Incorporating other forms of data, such as video and audio, into the 

sentiment analysis framework could provide a more holistic understanding of sentiments, particularly in 

multimodal communication channels. 

● Enhanced Real-Time Processing: While RMDEASD already exhibits low delay times, further optimization 

for real-time processing could make it even more suitable for applications requiring instantaneous sentiment 

analysis, such as live broadcast monitoring or real-time audience feedback systems. 

● Robustness Against Adversarial Attacks: Developing strategies to safeguard the model against adversarial 

attacks will be crucial, especially as sentiment analysis tools increasingly influence decision-making processes 

in sensitive areas like politics and finance. 

● Advanced Personalization Techniques: Implementing personalization algorithms to tailor sentiment analysis 

based on individual user profiles or specific demographic segments can provide more targeted insights, 

especially valuable in marketing and personalized content delivery. 

In conclusion, RMDEASD represents a significant contribution to the field of ABSA, offering enhanced capabilities 

for accurate and efficient sentiment analysis. Its continued development and adaptation will undoubtedly open new 

possibilities for its application across various domains, contributing to the evolving landscape of natural language 

processing and artificial intelligence scenarios. 
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