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Abstract: - Cancer is a group of diseases which share one common feature: the growth of abnormal cells, thus ranking as the second leading 

cause of death globally, after cardiovascular diseases in WHO's report. Evaluating gene expression is based on the fact that it is the genesis 

of early cancer detection, the concurrence of the molecular and genetic processes. By using DNA microarray techniques and RNA-sequencing 

approaches, researchers in computational genomics can give quantitative measures of gene expression levels providing very accurate input 

data for computational evaluation. The current paper is about machine learning technology, which identifies cancer subtypes according to 

patterns of gene expression. It embraces the two distinct methodologies which are traditional plus deep learning with high proficiency focused 

on the cancer-related gene. The outline includes the most popular deep neural network designs such as MLPs, CNN, RNN, GNN, and the 

recently emerged Transformer networks. The review describes common data collection methods used in this field and some of the essential 

datasets for supervised machine learning. In addition, the specific techniques developed to cover the complicated horizontal spread of gene 

expression data are also presented. The article explores theoretical possibilities for the promotion of machine learning-based gene expression 

analysis in cancer classification towards the end. 
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I. INTRODUCTION 

Cancer as a generic name of various diseases is a group of diseases manifested by genetic mutations that lead to 

uncontrollable cell proliferation within the body. The uncontrolled development resulting from this can get into 

various organs, and usually, it ends up fatal. Cancer is the second largest cause of death after cardiovascular diseases 

globally [1]. The newest hits point to gene expression analysis as a critical method for solving problems in cancer 

diagnosis and drug discovery [2,3]. Researchers can gather precious knowledge about the genes involved in cancer 

initiation and development through the investigation of gene expression patterns. Gene alterations can be considered 

potential signs for early cancer diagnosis and help find the appropriate therapeutic targets. These insights form the 

basis of the predictive, anticipatory and preventive approach to healthcare [4]. Gene expression is a dynamic link 

connecting information stored in DNA with the synthesis of proteins or other molecules. The intricate process 

commences with the transcribing of DNA into mRNA, which in turn is translated into proteins. Analysing gene 

expression enables us to understand the sequence of genetic changes taking place under various conditions and on 

a tissue level or cell-by-cell basis. It enables us to measure DNA transcript levels present in samples, the active 

genes, and the degree to which they are active. A significant part of the gene expression quantification is to map 

the sequenced reads to the known genome or transcriptome references. The correct measure of it is dependent on 
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the paired unique read data that could create a link between the nucleic acid sequences and the corresponding genes 

by bioinformatics. 

The most used methods for analysing gene expression data consist of DNA microarrays and next-generation 

sequencing (NGS). DNA microarrays employ the use of a matrix of two dimensions in which specific genes bind 

to known DNA bases through hybridization. Whereas NGS methods (i.e., RNA sequencing (RNA-Seq), to name a 

few), provide access to high-throughput analyses, scalability, and fast results [6, 7]. RNA-Seq converts RNA 

molecules to the cDNA (complementary DNA), and the DNA sequence determines the RNA expression. Unlike 

DNA microarrays, however, RNA-Seq [8, 9] is characterized by improved specificity, higher resolution, increased 

sensitivity to differential expression, and a broader dynamic range. Moreover, RNA-Seq does quantitative 

transcriptomics on multiple levels at specific time intervals. 

Analysing gene expression involves employing computational techniques to decipher gene regulation and 

understand their roles within cells and tissues. Machine learning (ML) methodologies have become instrumental in 

uncovering how genetic variations and regulatory regions influence traits, well-being, and overall health [10,11]. 

Initially, traditional ML techniques like Decision Trees and Support Vector Machines dominated this domain. 

However, over the last decade, deep learning (DL) approaches have surged in popularity. These DL methods excel 

in predicting the functionality and structure of genomic elements, including promoters, enhancers, and specific gene 

sequences, offering enhanced insights into genetic mechanisms [12,13]. In the realm of gene expression analysis, 

feature engineering stands as a crucial computational technique, particularly given the challenge posed by the vast 

dimensionality of data juxtaposed with a  limited sample size. This examination delineates feature engineering 

strategies into three categories: filter, wrapper, and embedded methods [14]. Filter techniques sift through data to 

eliminate irrelevant or redundant features, basing decisions on each feature's correlation with the target prediction. 

Wrapper methodologies harness classification algorithms to gauge feature significance, encapsulating the classifier 

within a search mechanism to pinpoint the optimal feature subset. Conversely, embedded strategies [15,16] integrate 

feature selection directly into the classifier's learning phase, spotlighting pivotal features to augment classification 

performance. While filter methods prioritize efficiency and computational simplicity, wrapper and embedded 

techniques excel in isolating pertinent features, thereby enhancing classification accuracy. In existing literature, a 

range of deep neural network (NN) architectures has been utilized for cancer classification using gene expression 

data. These include multi-layer perceptron (MLP), convolutional neural networks (CNN), recurrent neural networks 

(RNN), graph neural networks (GNN), and transformer neural networks (TNN). MLPs are characterized by 

connections linking every neuron to all preceding and succeeding layers. In gene expression data analysis, the 

MLP's input layer processes gene expression profiles, with individual probes corresponding to distinct neurons. 

The MLP's output layer then yields class probabilities for the gene expression sample [17]. 

CNNs, originally tailored for processing multidimensional arrays like images, utilize two-dimensional 

convolutional filters to learn hierarchical data representations. Some studies have restructured gene expression data 

into image-like two-dimensional arrays, leveraging this format as CNN inputs [18]. Given CNNs' adeptness at 

capturing local spatial relationships, they often outperform MLPs in gene expression analysis classification. 

Moreover, one-dimensional CNN variants feed each gene expression data row directly to the network, utilizing 

layers with one-dimensional convolutional filters. CNNs consistently emerge as leading deep learning models for 

gene expression studies. RNNs incorporate recurrent connections, specifically crafted for sequential data modelling. 

Utilizing a state vector, RNNs amalgamate current input information with previously stored data to generate 

outputs. This design makes RNNs apt for discerning correlations within sequential gene expression data, shedding 

light on underlying cancer developmental processes [19, 20]. However, RNNs can exhibit elevated computational 

demands and increased susceptibility to overfitting, especially with limited data, relative to CNNs. GNNs, on the 

other hand, harness architectures tailored for learning graph-based data representations through edges and nodes. 

These models convert gene expression data into graph-based representations, leveraging gene expression topology 

to discern correlations among genes [21]. The capability of GNNs to comprehend graph-structured data positions 

them promisingly for future gene expression analyses, as evidenced by recent research. TNNs employ a network 

design incorporating the self-attention mechanism, facilitating the recognition of distant dependencies in sequential 

data. This feature equips TNNs to pinpoint correlations within gene expression datasets, leading to their adoption 

in prior research. Distinctively, TNNs enable the concurrent processing of input samples during model training, 

accelerating the analysis of extended sequences. Moreover, researchers have crafted hybrid architectures, like TNNs 

integrated with 1D convolutional layers, aimed at capturing shared genetic information across cancer types without 
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necessitating feature selection [22]. Finally, the emerged transfer learning methods, which make use of knowledge 

possessed by a model with a large dataset to solve the problem of data scarcity among another model and model 

dimension, have become a major solution to the problem of data limitation and high dimensionality of gene 

expression data [23,24]. 

Top of Form  

Notwithstanding many milestones in machine learning (ML) for cancer classification with gene expression data are 

being achieved, there are still a lot of obstacles because the role of gene expression is ambiguous. The variance in 

the data sets of gene expression can be surprisingly less despite a very vast dimensionality due to the large number 

of genes. Redundant data is normally removed by trying different kinds of the feature-engineering techniques, 

which allow to select the meaningful points for classification. Although old ML implementations predominantly 

rely on expert feature engineering and especially careful data preprocessing, integrated feature engineering 

alleviates the need for such a high level of expertise. Moreover, Transfer Learning has become a tool that facilitates 

overcoming data volume issues, and this is again with limited data. Traditionally, DL methods have shown superior 

performance to ML algorithms as reflected in the metrics that measure model accuracy, therefore a future that relies 

on DL for building gene expression analysis models. At present, the model ensemble employing techniques such 

as MLP and CNN and the best practice of transfer learning and feature engineering sets the classification 

performance of achieving the classification accuracy of 90% and above. Nevertheless, these approaches have 

significant scope for error, when considering elaborate parameters and necessary improvement for their more 

inclusive applications. To add to this, most current methods are complicated by interpretability difficulties and have 

a narrow range of uses for diverse data types and modalities. In the sentence above, the author emphasizes the need 

for the incorporation of advanced tools that would address the shortcomings of current techniques. Such negative 

consequences include interpretability difficulties, a limited range of uses for diverse data types, and a lack of 

compatibility with diverse modalities. 

Although there are a lot of review articles in different scholarly literature that have closely inspected the 

advancement of computational techniques for expression gene analysis, this article has focused on innovative 

approaches. Table 1 samples the most recent review papers which are focusing on this study of traditional “Machine 

learning (ML) methodologies, feature engineering methodologies, and Deep Learning (DL) techniques towards 

solving the same issue that we pursue. Notably, the data type is being analysed as well. Some of the review papers 

choose to focus on the traditional ML techniques used in the assessment of gene expression, while some manuscripts 

explore the feature-engineering techniques or specific mediums used in gene expression analysis. The earlier 

genome-wide computational analysis research was mostly concerned with DNA microarray analysis of gene 

expression profiles. Quite interestingly, while there is a considerable overlap between subjects of reviews done 

before 2019 in Table 1 and what this article discusses, the current contribution looks at certain issues not previously 

looked at in other publications. The core focus of this survey is its in-depth examination of both the traditional 

machine learning and the contemporary deep learning approaches in mRNA analysis. The earlier reviews refer to 

the implementation of DL models like MLP, CNN and RNN without discussing the involvement of GNN and TNN 

which, despite their emergence as models for the retrospective analysis phase, is yet to be discussed thoroughly 

[25,26]. Additionally, this review discusses the relationship between RNA-Seq and gene expression modelling, an 

area of research that is currently highly visible. Moreover, the area of interest is complemented by the examination 

of associated feature-engineering methods and datasets that are essential in ML driven gene expression analyses, 

and which are indeed lacking articles in different literature reviews available. 

Table 1. List of earlier review papers for gene expression work using ML and DL approaches 

Reference ML Approaches DL Approaches Microarray 

Data 

RNA-Seq 

Data 

Sathe et al., 2019 [29] No CNN & RNN Yes Yes 

Koumakis et al., 2020 

[30] 

No CNN & RNN Yes Yes 

Zhu et al., 2020 [31] No CNN, RNN, MLP & 

NN 

Yes Yes 

Gunavathi et al., 2020 

[32] 

No CNN Yes Yes 
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Tabares et al., 2020 [33] Yes CNN & MLP Yes No 

Mazlan et al., 2021 [34] Yes CNN Yes Yes 

Karim et al., 2021 [35] Yes CNN, RNN, MLP & 

NN 

Yes Yes 

Thakur et al., 2021 [36] Yes CNN Yes Yes 

Montesinos-López et al., 

2021 [37] 

No CNN, RNN, MLP & 

NN 

Yes Yes 

Bhandari et al., 2022 [38] Yes CNN, RNN, MLP & 

NN 

Yes No 

Khalsan et al., 2022 [39] Yes CNN, RNN, MLP & 

NN 

Yes Yes 

II. GENE EXPRESSION DATA 

Gene expression study means the investigation of the number of transcripts produced by particular cells or tissues 

providing insights into the levels of the gene activity. Transcriptomics, a related field of technology, measures the 

size of the transcriptome. In the early era of computational methods of transcriptomics, Sanger sequencing was 

used to do 'expressed sequence tag' libraries. 

The DNA of cDNA is an organism or tissue sample built from only mRNA. Up to this point, approximately 171 

billion DNA libraries from about 1,400 cellular organisms have been created. Although EST libraries provide 

sequences of expressed genes, they often fail to furnish optimally complete sequences of these genes. As a result, 

paint tag-centric techniques like Serial Analysis of Gene Expression (SAGE) progressed and enabled the 

quantitative analysis of various transcripts within cellular systems without prior knowledge of the gene. SAGE 

works from a theoretical background, whereby the same nucleotide distribution is assumed to be prevalent 

throughout the genome. Over time, methods like Sanger sequencing of EST libraries and SAGE were devised as 

the premonition of further methods like DNA microarrays or most impressively, RNA-Seq, thus raising the 

accuracy and the range of estimation of gene expression. 

2.1 MICROARRAY DATA 

Microarray data are an outcome of a laboratory method where the researchers use a 2D device, usually referred to 

as chips or slides, coated in a lot of micro spots. There are many lights lit on this slide, each one representing a 

specific DNA sequence or a gene. Using a hybridization technique, responding DNA samples attach to these spots. 

The second stage through analysis reveals the colour of these marks and measures the expression level of the 

specific genes. In the data model, each row represents the expression of a gene while columns correspond to each 

biological sample. 

Microarrays assist in various tasks, such as the separation of DNA like RNA or comparative genomic hybridization 

in the majority of occasions as cDNA after retrotranscription. Such analyses offer views into genome-wide 

expression profiles related to specific conditions, such as cancer to support research and drug development, 

pharmacogenomics, and therapeutic strategies. 

Despite its usefulness in contrarily measuring the expression of many genes at the same time, DNA microarrays 

have their limitations. They are mostly associated with inexactness, faultiness, imprecision, and uncertainty. 

Moreover, the experimental design is sensitive to factors like the degradation rates of genetic materials and 

amplification processes that can be responsible for imprecision in quantifying gene expression. 

2.2 RNA-SEQE DATA 

Next-Generation Sequencing (NGS) method RNA sequencing (RNA-Seq) tends to be the most utilized tool [41] 

because it allows for profiling at a higher speed than its counterparts. This approach allows researchers to trace 

RNA of any organism with a fantastic degree of precision, as well as to accurately identify its presence and 

quantities at specific epoch of time [42]. By creating millions of RNA profiles based on complex RNA samples, 

RNA-Seq covers several different purposes. Specifically, techniques that involve, the determination of gene 

expression, keeping a record of the expression patterns over time or response to treatments, transcript annotation, 

tackling post-transcriptional modifications, and uncovering alternative splicing and polyadenylation are taken into 
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account. RNA-Seq's versatility plants it well for the simultaneous analysis of different types of RNA molecules 

within cells or tissues – coding messenger mRNA, non-coding regulatory RNA (miRNA, siRNA) and functional 

RNA (tRNA, rRNA) – altogether quantifying their levels. Primarily, RNA-Seq gives high resolution and impressive 

measurability setting ahead of transcriptome studies [43]. Thanks to these benefits RNA-Seq is undermining more 

and more microarrays in gene expression research. 

Table 2 shows the comparison between microarray data and RNA-Seq data covering genes raged, various isoforms, 

resolution, background noise, costs, rare and new transcript detection, and non-coding RNA identification. To sum 

up, the RNA-Seq data outperforms the microarray in versatile aspects. 

For instance, single-cell RNA sequencing (scRNA-Seq) ways [44], generate extensive transcriptome profiles at the 

individual cell level. This technique allows for more in-depth evaluations at a quicker rate, thus creating larger 

datasets compared to the traditional method of RNA-Seq. It gives researchers a necessary and accurate way to 

discover genes expressed in a diverse sample down to the single-cell level, measuring their expression across 

thousands of cells. 

2.3 RNA-SEQ DATA COLLECTION 

To generate RNA-seq data for identification, the cDNA is obtained by the transcription of RNA. This leads to the 

creation of the cDNA libraries that are sequenced and analysed through the NGS platform. The activity of 

sequencing is to purify and isolate mRNA molecules. mRNA transcribes to cDNA through the process of reverse 

transcription that occurs due to the presence of the retrovirus enzyme. Then, cDNA libraries are synthesized from 

cDNA fragments which are repeatedly copied and amplified to create them. These types of libraries are commonly 

subjected to NGS for the analysis of the relative number of transcripts of various genes. The efficacy is dominated 

by the quantity of biological and technical replicates, the sequencing depth, and the universality of the target 

transcriptome. 

Some of those experimental decisions may not be even noticeable in the quality of the RNA-Seq, but meticulous 

testing is extremely important. The design applies the strategy of achieving quality objectives and at the same time 

overcoming the confines of time and cost. 

2.4 GENE EXPRESSION DATASETS 

The scientific community devoted years of work to collecting, organizing, and integrating various gene expression 

datasets. Table 3 shows RNA-Seq and microarray platforms gene expression datasets, focussing human tissue 

samples. These datasets are in the public domain, can easily be obtained, and are widely applied for cancer 

classification and similar research issues. 

Table 2. Gene Expression Datasets 

Reference No. of Classes Types of Cancer Sample Size Datasets 

 

 

Mohammed et al., 2021 [45] 

 

 

Multiclass 

Classification 

Breast Cancer, Colon 

Adenocarcinoma, Lung 

Adenocarcinoma, 

Ovarian, and Thyroid 

cancer 

 

 

2166 

 

 

RNA-Seq 

Li et al., 2022 [46] Two Renal carcinoma 945 RNA-Seq 

Zhang et al., 2022 [47] Two Liver r Carcinoma 424 RNA-Seq 

Coleto-Alcudia et al., 2022 

[48] 

Two Breast Cancer 1178 RNA-Seq 

Abdelwahab et al., 2022 [49] Two Lung Adenocarcinoma 549 RNA-Seq 

Houssein et al., 2021 [50] Two Leukemia 72 Microarra

y 

Hira et al., 2021 [51] Multiclass 

Classification 

Different types of Cancer 2096 Microarra

y 

Vaiyapuri et al., 2022 [52] Binary 

classification 

Ovarian Cancer 253 Microarra

y 
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Lin Ke et al., 2022 [53] Binary 

classification 

Lung Cancer 181 Microarra

y 

Deng et al., 2022 [54] Binary 

classification 

Myeloma 173 Microarra

y 

III. FEATURE ENGINEERING 

Feature engineering converts raw data into handcrafted features or descriptors which can highlight some critical 

information or fixing some data analysis constraints for machine learning models. The purpose of this 

transformation is either feature construction or feature refinement, working in favour of both supervised and 

unsupervised learning, causing simplification of data transformation and increases in prediction accuracy to be 

achieved. Feature extraction techniques have proved immensely crucial in eliminating the marker genes that can be 

associated with the increased discriminating capacity of machine learning in the identified dimensions [55-57], 

while ascertaining which genetic attributes are most important. As far as RNA-Seq data goes, which is a large-gene 

collection relative to the number of samples, feature selection has a specific role of zeroing in on a small subset of 

genes that most accurately capture the patterns of a dataset in the simplest space achievable which increases the 

signal-to-noise ratio. 

Feature engineering algorithms for gene expression data generally fall into three categories: shifter, filter, and 

enclosed method. Figure 1 depicts the action of these three primary feature engineering methodologies from 

scrutinising the data to the establishment of the final models. 

 

Figure 1. Three Types of Feature selection techniques methods a) Wrapper b) Filter c) Embedded. Method 

[58] 

3.1 FILTER METHODS 

Filtration methods in feature engineering designate such methods generated to delete the features of data that are 

considered non-essential hence the models established to predict gene expression are improved [59]. In most cases, 

filters are used as first processes in the preprocessing. The selection process is done by applying a specific filter to 

determine the genes’ relevance and assigning scores to these genes, then using a threshold to select only the relevant 

genes [60]. These techniques distribute weights according to the properties of the data, assessing the disassembling 

of every feature's contribution. Hence, the reference is made only to significant aspects of the data while the rest of 

the least influential part is filtered out. We demonstrate an evolutionary algorithm approach (Grouping Genetic 

Algorithm or GGA) in classifying imbalanced RNA-Seq samples into different cancer classes that have different 

initial dataset sizes. Filter techniques are flexible in that they are computationally efficient, fast and cost-effective, 

and can thus be used in data that are big due to RNA-Seq. Table 4 summarizes some of the filter methods used in 

RNA-Seq feature engineering and provides the results of model prediction performance that takes advantage of the 

same respective filter methods. 
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Table.2. Different Feature selection methods in gene Expression Data 

Reference Feature 

Selection 

Method 

Feature Selection Algorithm Dataset Types Accuracy 

(%) 

 

Park et al., 2019 [61] Filter 

Methods 

Artificial Neural Network RNA-Seq 90.71 

 

Wu and Hicks, 2021 [62] Filter 

Methods 

Support vector machine Naïve 

Bayes 

Decision Tree 

K-nearest Neighbour 

 

RNA-Seq 

85 

85 

86 

90 

Liu and Yao, 2022 [63] Filter 

Methods 

Deep Neural Network RNA-Seq 99 

Mahin et al., 2022 [64] Filter 

Methods 

K-nearest neighbour 

 

RNA-Seq 100 

Liu et al., 2022 [65] Wrapper 

Methods 

Random Forest RNA-Seq 99.68 

Al Abir et al., 2022 [67] Wrapper 

Methods 

Support vector machine. 

SVM-RFE 

 

RNA-Seq 99.93 

Kong and Yu, 2018 [67] Embedde

d Method 

Graph Embedded Deep 

Feedforward Network 

BRCA- RNA-

Seq 

94.50 

Zhang and Liu, 2021 [68] Embedde

d Method 

Robust Biomarker Discovery RNA-Seq 97-98-99 

Abdelwahab et al., 2022 

[49] 

Embedde

d Method 

Support vector machine. 

SVM-RFE 

RNA-Seq 94 

Coleto-Alcudia et al., 

2022 [48] 

Embedde

d Method 

Filtering+ SVM RNA-Seq 93 

 

3.2 WRAPPER METHODS 

Wrapper functions evaluate the role of features along with their reputation by using a classification method when 

doing so. Such approaches happen directly with the classifier and are used to discover a related group of 

characteristics that have the potential to be good predictors. Firstly, deep profiling of the gene subsets is performed 

by a selected classifier which is then used for retraining a classifier using the top significant genes only. The main 

type of feature subset selection methods used within wrapper methods is based on how well the learning algorithm 

of the model performs. In general, it can be said that wrapper methods are like containers in the sense that they 

package the learning algorithm into a search mechanism, whose goal is to find the most beneficial feature subset. 

In this approach, the "black box" learning algorithm works as an optimization metric, with its efficiency as the 

optimization metric. Wrapper methods can be further divided into deterministic or randomized approach groups. 

Well-known wrapper methods, for instance, k-nearest neighbours [69], random forests [70,71], support vector 

machine [72,73], and so on are different algorithms that have been integrated into classifiers for feature selection. 

Wrapper methods involve training and evaluations of numerous classifiers which cover different feature 

breakdowns, thus making them more complex and demanding more time as well as computer resources in contrast 

with the filter methods. Nevertheless, such outputs are most likely to result in greater performance. 

3.3 ENSEMBLE METHODS 

The embedded methods, designed as feature engineering algorithms, aim to optimize subset composition effectively 

by combining with a specific classifier. These methods are designed to utilize the strong sides of both types 

interchangeably, so that they may fit the subtleties of the given learning vector. In embedded learning methods 

usually do better than filter and wrapper methodologies, which is mainly caused by the capability to address the 

problem of feature interaction. Such factors occur due to certain subsets of genes interacting with other genes, which 
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could take the feature selection process to locally optimal subsets and undermine better computational performance 

as a whole [74]. 

Top of Form 

3.4 HYBRID METHODS 

A variety of papers in the literature have analyzed hybrid methods, a collection of the individual strengths of these 

approaches. For example, first, filter methods can be used so that the feature set gets reduced before moving on 

with the wrapper approach. Finally, the feature importance will be generated by a classifier model, and it will 

determine the optimal gene subset among all [75]. This class of algorithms are a trade-off of computational 

requirements and end-game results. Similarly, ensemble methods such as Bagging, Boosting Ensembles, and 

Random Forests have since proven very flexible and enduring solutions for tackling feature interactions involved 

in high-dimensional, complex tasks. Through the application of an ensemble of weak classifiers that may work on 

a subset of the training data or feature inputs, the ensemble methods reduce overfitting tendencies and help to 

produce a more accurate predictive outcome in gene expression analysis [76]. 

3.5 BENEFITS & DRAWBACKS OF FEATURE ENGINEERING 

The presentation of Table 5 provides a summary of feature-engineering techniques’ benefits and drawbacks related 

to gene expression analysis. The line is drawn between the two types of filters: univariate which assesses each 

feature independently and multivariate which considers all the relationships between different features. The pre-

existing knowledge of feature distributions along with wrapper methods when categorized, give us the advantages 

and drawbacks respectively. For gene expression analysis, deterministic models, which help represent the 

variability of features in the context of the predictive model, are used while the randomized methods operate without 

presuming any specific data distribution or factoring in feature fluctuations. 

Table 3. Varying natures of the feature selection methods across different categories 

Feature 

Selection 

Filter Method  Wrapper Method  Embedded Method 

Pros           Univariate                                Deterministic  

Scalable to large datasets.       Interacts with the classifier simply. 

Independent of the classifier.  It takes less time to compute than 

                                                randomised methods. 

 

Interact with the 

classifier in a complex 

way. 

Feature Dependant. 

Less computational 

complexity      Less 

prone to the feature 

than the wrapper 

method 

 

            Multivariate                              Randomized 

Feature Dependencies.                    Interact with the classifier. 

Independent of the classifier.          Feature Dependencies. 

Less computational complexity is   Less prone to the feature 

than the wrapper method.                interaction problem 

Cons Univariate                                               Deterministic 

Feature independent.                       Highly prone to overfitting. 

Independent of the classifier.         Classifier dependant. 

 

 

Dependant on 

Classifiers. 

IV. METHODS FOR GENE EXPRESSION 

Various ML methods have been applied in gene expression analysis to recognise potential cancers and incorporate 

insights into potential treatment methods. 

4.1 TRADITIONAL MACHINE LEARNING MODEL 

Different traditional machine learning algorithms, k-nearest Neighbour (kNN), Support Vector Machines (SVM), 

Random Forest (RF) and Naïve Bayes (NB) have been extensively adopted in research projects focused on early 

cancer detection [77, 78]. Like Segal and colleagues developed a genome centric SVM method especially for title 

discrimination [79]. Students applied the t-test to compress the genetic set to 256 genes which were then classified 

through a linear SVM classifier achieving the astonishing 75 correct in 76 cases of leave-one-out cross-validation. 
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Furthermore, it is often seen in research that ML methods with feature selection have been used effectively for 

prediction. Zhang et al. [87] used an SVM that found the best features in an RFE framework and used a constrained 

search to find the best parameters of the SVM, which was named SVM–RFE–PO. This method utilized grid search 

feature selection, Partial Swarm Optimization, and a genetic algorithm in a hybrid fashion choosing parameters 

during the feature selection step, resulting in an SVM method for storage cancer classification. 

Moreover, a random forest ensemble  is used to pick out the 237 genes and to this end, they were insusceptible to 

attack the model's predictive accuracy. Additionally, according to Hijazi et al., to target cancer subtype genes, they 

introduced a two-stage feature selection tool for attribute estimation and Genetic Algorithm base [81]. 

The model showed a high level of accuracy of 99.89% and 99.40% precision on certain specified cancer-type data 

coming from five separate datasets, yet its performance wasn’t kept constant when dealing with other types of 

cancer. The Evolutionary Programming-trained Support Vector Machine (EP-SVM) approach [81] aims to create 

a probabilistic SVM framework with separate classification features, and the probabilistic predictor outputs reflect 

the corresponding binary classifier probabilities. Here, the summary of past literature concerning machine learning 

methods used for gene expression profiling is given as Table 7. 

Table.6. Conventional ML approaches for gene expression analysis 

Reference Dataset Algorithm Type of Dataset Classificati

on 

Accuracy 

Segal et. al., 2003 [79] Cancer SVM Gene 

Expression 

98.5 

Hijazi et. al., 2013 [81] Mixed -Lineage 

Leukemia 

SVM Linear Gene 

Expression Data 

99.89 

Ram et al., 2017 [80] Colon cancer RF Microarray 

Data 

87.39 

Zhang et al., 2018 [70] Breast Cancer SVM-RFE-

PSO 

Gene 

Expression Data 

81.54 

Yuan et al., 2020 [82] Tumour-educated 

platelets 

SVM Gene 

Expression Data 

95.93 

 

Abdulqader et al., 2020 [83] Lymphoma KNN & NB Microarray 

Data 

94.7 & 

74.83 

Broadly speaking, machine learning (ML) algorithms excel at uncovering intricate patterns within intricate and 

multi-dimensional datasets across a variety of fields. Consequently, they've been particularly effective in analysing 

and categorizing gene expression data [82]. Nonetheless, the efficacy of traditional ML algorithms is largely 

contingent upon the calibre of the input features. As such, their success hinges on the effectiveness of the integrated 

feature selection techniques. 

4.2 DEEP LEARNING TECHNIQUE 

Deep learning techniques implement artificial NN with several stages of processing elements which enable 

obtaining data representations instead of input directly. This category of learning excels in capturing the hierarchy 

relationships observed within large inputs and therefore, is a major advantage over traditional ML approaches. With 

such distinctive capabilities, then they are opening door to futuristic methods for gene expression analysis [85]. 

Applying the most popular NN architectures, which include fully connected NN (multi-layer perceptron NN), 

convolutional NN (CNN), recurrent NN (RNN), graph NN (GNN), and transformer NN (TNN)), is an example 

demonstration [31]. 

4.2.1 Multi-Layer Perceptron (MLP) Neural Networks  

The Multilayer Perceptron (MLP) represents a neural network structure characterized by fully connected layers, 

ensuring each neuron within a hidden layer connects to every other neuron in adjacent layers. In the realm of gene 

expression analysis, MLP classifiers have been at the forefront of cancer classification efforts. 
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For example, Lai et al. [86] devised an MLP model amalgamating various gene expression and clinical data sources 

to forecast the overall survival rates of non-small cell lung cancer (NSCLC) patients. By integrating 15 biomarkers 

with clinical insights, they crafted an integrative MLP classifier via bimodal learning, achieving notable metrics 

like an AUC of 0.8163 and an accuracy of 75.44%. 

In another study, Zhang et al. [87] introduced an unsupervised feature learning paradigm that amalgamated principal 

component analysis (PCA) with an autoencoder-based MLP model to discern diverse attributes from gene 

expression profiles. Utilizing an ensemble classifier dubbed PCA-AE-Ada, they predicted clinical outcomes in 

breast cancer cases. 

Gao et al. [88] innovated with the Deep Cancer Subtype Classification (DeepCC) method, emphasizing supervised 

cancer categorization grounded in functional spectra analysis, indicative of biological pathway activities. By 

employing multilayer neural networks instead of manually curated features and leveraging enrichment analysis, 

they achieved over 90% balanced accuracy in classifying breast and colorectal cancers. 

Similarly, Chandrasekar et al. [89] leveraged an MLP-centric classification strategy, prioritizing accuracy in 

predicting cancer severity and identifying the illness using a compact set of gene subsets. Their focus was on 

optimizing predictions concerning the disease's severity. 

Lastly, Laplante et al. [90] tailored an MLP framework to distinguish cancers across 20 distinct anatomical regions 

by leveraging miRNA stem-loop data sets. With an initial layer boasting 1,046 input neurons corresponding to 

individual miRNAs and a concluding layer identifying 27 cancer types, their model realized an impressive average 

accuracy of 96.9%. 

4.2.2 Recurrent Neural Networks (RNN)  

Recurrent Neural Networks (RNNs) stand out within the neural network category due to their inherent recurrent 

connections among neuron units, endowing them with memory capabilities. This intrinsic memory enables RNNs 

to leverage past observations to make sense of current or even forecast future observations within a sequence. Such 

properties equip RNNs with dynamic sequential processing abilities, ideal for analysing sequential data and 

discerning intricate relationships and trends. 

Sahin et al.  innovated with an RNN framework that integrated a Long Short-Term Memory (LSTM) network with 

the Artificial Immune Recognition System (AIRS) to devise a stability mechanism for robust microarray dataset 

feature selection, securing an accuracy of 89.6% [91]. Aher et al.  introduced the RCO-RNN, harnessing the rider 

chicken optimization (RCO) technique to extract pertinent genes from gene expression data. This method 

showcased an impressive 95% accuracy across datasets like the Leukemia database, Small Blue Round Cell Tumor 

(SBRCT), and Lung Cancer Dataset. 

Majji et al [92]. put forth the JayaALO-based DeepRNN, a cutting-edge technique for automated cancer prediction 

that melded the Jaya ant lion optimization (ALO) with an RNN structure [93]. Their method exhibited peak 

accuracy, reaching 95.97% across varied datasets such as AP Colon Kidney, AP Breast Ovary, and others. 

In related research domains, Suresh et al.  crafted an innovative strategy to interpret genome sequencing by fusing 

the bat sonar algorithm with the LSTM model for disease detection [94]. RNNs, particularly LSTM recurrent 

structures, have been recurrently deployed in various studies. They've been instrumental in identifying genes 

associated with tumour diagnosis, pinpointing breast cancer cells, distinguishing between cancerous and healthy 

cells, and recognizing biological entities [95-98]. Furthermore, Zhao et al. pioneered an RNN-centric model 

targeting transcriptional target factor identification [99]. Other techniques, such as the memetic approach, have 

been utilized to fine-tune RNN parameters, while methodologies like LASSO-RNN have been instrumental in 

reconstructing gene regulatory networks (GRNs) [100]. A consolidated overview of recent RNN-centric studies is 

encapsulated in Table 8. 

RNN architectures offer several benefits for gene expression analysis, notably enhancing efficiency by capturing 

and preserving sequential feature details [101]. Furthermore, these networks can flexibly adapt to evolving 

dynamics in uncertain systems, like scenarios where the importance of genetic data might shift over time. However, 

it's worth noting some limitations of RNNs in this context. They tend to have extended processing durations 

compared to methods like CNNs, leading to more prolonged and intricate training processes. Moreover, when 
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dealing with extended genomic sequences, RNNs may exhibit challenges in capturing dependencies as effectively 

as techniques such as GNN and TNN [102, 103]. 

4.2.3 Convolutional Neural Networks (CNN)  

Convolutional Neural Networks (CNNs) were initially crafted for image analysis, utilizing convolutional filters to 

autonomously discern spatial features within input data. These architectures integrate stacked convolutional layers 

with pooling layers, often supplemented with regularization layers like Batch Normalization or Dropout [104]. In 

the realm of gene expression analysis, a CNN-centric ensemble method is introduced, achieving a remarkable 98% 

precision across three distinct cancer RNA-Seq datasets, including Lung Adenocarcinoma, Stomach 

Adenocarcinoma, and Breast Invasive Carcinoma [105]. Other studies [18,106] leveraged CNNs to classify tumour 

categories by translating high-dimensional RNA-Seq data into 2D image representations [18, 106]. For instance, 

Elbashir et al. [18] proposed a streamlined CNN model for breast cancer classification, yielding an accuracy of 

98.76%. Additionally, an investigation employed three distinct CNN models on a vast dataset spanning 33 cancer 

types, showcasing the 1D-CNN model's proficiency in predicting breast cancer subtypes with an 88.42% precision 

[107]. 

CNN architectures, spanning 1D to 3D convolutions, have been tailored for gene expression data analysis. One-

dimensional convolutions adeptly handle genomic sequences, capturing sequential patterns. Meanwhile, 2D 

convolutions are adept at processing gene expression data by transmuting them into image formats. However, one 

challenge is the potential loss of information when discretizing continuous gene expression values into colour 

palettes for image creation. An alternative method bifurcates the image creation process: first converting a 

biological functional hierarchy into an image template, and subsequently mapping gene expressions onto this 

template, thereby retaining the continuous expression values without the pitfalls of discrete colour mapping [108]. 

Overall, CNNs have demonstrated superior efficacy in gene expression analysis compared to RNNs (referenced in 

Table 9), credited to their prowess in swiftly and accurately processing vast genetic datasets, and adeptly extracting 

pivotal information from both local and global gene expression features [36,109]. 

4.2.4  Graph Neural Networks (GNN)  

Graph Neural Networks (GNNs)  are deep learning frameworks tailored for analyzing data represented in graph 

formats, characterized by vertices (nodes) and connections (edges) [110]. These networks disseminate feature 

information across nodes, facilitating the acquisition of context-specific features by examining relationships 

between objects and entities within the graph. The core principle involves iteratively aggregating and transforming 

neighbouring node features, thereby generating updated node embeddings. In biological contexts, nodes typically 

represent genes, transcripts, or proteins, while edges symbolize experimentally determined functional or similarity 

connections. For instance, in generating network graphs from gene expression data, correlation coefficients, such 

as Pearson's, assess the similarity between gene expression profiles to establish graph edges [111]. 

GNNs are instrumental in multi-omics pan-cancer data analysis, encompassing gene expression patterns, DNA 

methylation, gene mutations, and clinical metrics, with a focus on cancer prediction [25]. Pfeifer et al.  pioneered 

an interpretable GNN framework targeting cancer subnetwork identification by leveraging patient-specific protein-

protein interaction (PPI) network topologies enriched with multi-omics data [111]. This approach enhances 

subnetwork detection within disease contexts. Concurrently, other research endeavours to harness GNNs to predict 

cancer types and identify oncological markers using multi-omics and PPI networks [113]. Zhou et al. utilized gene 

interaction networks to predict cancer across multi-dimensional omics datasets via graph convolutional networks 

(GCNs) [113]. Their method integrated contour-aware information aggregation and gated graph attention 

mechanisms [26], improving semantic understanding of gene-molecular function relationships and achieving high 

diagnostic accuracy [115]. 

GNNs offer distinct advantages in gene expression data analysis, leveraging inherent capabilities to propagate and 

aggregate attributes, and capturing intricate cellular relationships evident in RNA-Seq data graphs. These networks 

adeptly aggregate cell-cell relationships, leveraging domain expertise in gene regulation to address data gaps [116] 

By amalgamating topological neighbour propagation, GNNs facilitate the construction of gene regulatory networks 

(GRNs), augmenting predictive prowess [117]. However, GNNs can be susceptible to data noise during graph 

structure formulation [118]. 
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4.2.5  Transformer Neural Networks (TNN)  

Temporal Neural Networks (TNNs) utilize network structures grounded in the multi-head self-attention mechanism, 

enabling them to discern long-distance dependencies within sequences [119]. This methodology excels in handling 

sequential data types like genomic sequences, time series, acoustic signals, and natural language data. Within gene 

expression analysis, TNN stands out due to its capability to concurrently process information from diverse 

representation facets across genomic sequences. For instance, the Gene Transformer model [27] harnesses multi-

head self-attention components to navigate the intricacies of high-dimensional gene expression, identifying 

pertinent biomarkers across diverse cancer subtypes. Similarly, the multi-omic transformer, inspired by Osseni et 

al.'s architecture [28], adeptly discerns intricate phenotypes (specific cancer types) by amalgamating transcriptomic, 

epigenomic, copy number variation, and proteomic data types. Additionally, Lv et al. [10] devised a transformer-

centric fusion network, PG-TFNet, merging pathological imagery with genomic data for nuanced cancer survival 

predictions. This transformer-centric approach facilitates insightful intra-modality relationship exploration across 

varied pathological slide perspectives. 

In the realm of performance metrics, TNN models have showcased heightened resilience compared to both CNN 

and RNN counterparts, delivering commendable outcomes across diverse data schemas. The inherent self-attention 

mechanism empowers TNNs to harness contextual cues from any sequence segment, effectively capturing extensive 

dependencies—a feat less efficiently achieved by CNNs and enhancing parallel processing relative to RNNs [121]. 

However, TNNs come with their set of challenges, notably their appetite for expansive datasets; consequently, their 

efficacy might wane when handling genetic datasets with constrained sample sizes, potentially trailing behind other 

neural network paradigms [122]. 

4.3 TRANSFER LEARNING 

Transfer learning, as outlined in, seeks to enhance the performance of downstream models by leveraging 

information from distinct but related source domains [130]. Kakati et al. applied transfer learning to the DEGnext 

CNN model, utilizing knowledge representation from feature maps to predict significant up-regulated (UR) and 

down-regulated (DR) genes in untrained cancer datasets obtained from The Cancer Genome Atlas database [122]. 

Similarly, Das et al. employed transfer learning with 2D CNN models on spectrogram images of digital DNA 

sequences for automated recognition of liver cancer genes [24]. 

In a different application, Zhang et al. fine-tuned a Convolutional Long Short-Term Memory network (CLSTM) 

through transfer learning to model temporal genetic information in dynamic contrast-enhanced magnetic resonance 

imaging (DCE-MRI) of cancer genes [124]. A Deep Transfer Learning (DTL) framework that utilized individual 

cell information without employing profiling or reduction methods, resulting in a 30% acceleration of the process 

and improved performance. The characteristics of various transfer learning approaches are detailed in Table.5. 

Table.5. Transfer Learning based on DL methods for gene expression data analysis. 

Reference Type of Cancer Algorithm Dataset 

Type 

Accuracy (%) 

Lopez-Garcia et al., 2020 

[108] 

Lung Cancer Transfer Learning with CNN Gene 

expressio

n Data 

73.26 

Zhang et al., 2021 [124] 

 

Breast Cancer Transfer Learning with CNN 

& CLSTM 

Breast 

Cancer 

With CNN 90 

With CLSTM 93 

Kakati et al., 2022 [123] Uterine and 

breast cancer 

Transfer Learning with CNN Gene 

expressio

n Data 

AUC:99 

Das et al., 2022 [24] Liver Cancer Deep Transfer Learning Gene 

Sequence 

98.86 

4.4 PATHWAY ANALYSIS 

Pathway analysis serves as a pivotal method for gleaning biological insights from extensive gene expression 

datasets. The primary objective of these methodologies is to discern which specific pathways might be disrupted 

owing to distinct gene expression patterns [125]. For example, the adipocytokine signalling pathway has proven 
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instrumental in distinguishing between breast cancer and tumours of the colon and stomach [126]. Such techniques 

are instrumental in pioneering bioinformatics tools, empowering scientists to unravel the genetic and pathway 

alterations intrinsic to various cancer types and identify potential therapeutic avenues. 

Over the preceding decades, a plethora of pathway analysis techniques have emerged, categorized into three distinct 

generations based on their temporal evolution and methodological approach. The initial two epochs encompass 

over-representation analysis (ORA) and functional class scoring (FCS), both of which treat pathways as collections 

of genes. Contrarily, the third generation, known as topology-based (TB) pathway analysis, elevates the analytical 

approach by integrating pathway topology for enhanced accuracy and performance [127, 128, & 129]. Within the 

realm of TB pathway analysis, the methodology amalgamates two pivotal data facets: genes differentially expressed 

within a pathway and supplemental biological insights concerning the magnitude and positioning of alterations 

across all differentially expressed genes, their interrelationships, and interaction dynamics. Esteemed biological 

pathway repositories like KEGG and Reactome leverage meticulously curated insights spanning years to delineate 

the spatial arrangements and interplay among genes within specific pathways [130, 131]. 

V. FUTURE DIRECTIONS 

This section discusses future directions that may potentially advance the research on ML-based gene expression 

analysis. 

In the realm of future research, expanding the types of input features in conjunction with established learning 

algorithms is paramount, as gene expression's complete impact transcends merely genetic sequences. For example, 

DNA methylations and mutations present viable feature types for refining cancer classification. These DNA 

methylations, observed at CpG dinucleotides and non-CpG sites, play crucial roles in both normal developmental 

processes and pathological alterations, including gene silencing of tumour suppressors and DNA repair genes. 

Integrating such methylations and mutations with RNA-Seq data can furnish valuable features enhancing tumour 

classification accuracy. 

Simultaneously, the meticulous design of computational algorithms stands pivotal. Researchers can pioneer 

techniques tailored for optimal performance on benchmark datasets like the unique molecular identifier (UMI), 

underpinned by experimentally validated reference genes. These endeavours can foster comparative analyses of 

single-cell methods and algorithmic efficacy assessments across protocols like SMART-Seq, Cel-Seqs, and 

droplets. 

A prospective research avenue entails pinpointing cancer-centric biomarkers, leveraging methodologies such as 

IntPath for functional pathway analyses of relevant genes. Deep learning (DL) techniques, applied to 2D images, 

hold promise for discerning cancer-specific biomarkers. Graph neural networks (GNN) can facilitate the integration 

of single-cell multi-omics data through heterogeneous graph structures, encompassing technologies like Droplet 

scRNA-Seq and Smart-Seq2, elucidating cell-type-specific regulatory mechanisms and T-cell ancestries. 

A notable emphasis must be on architecting interpretable ML models, elucidating their decision-making rationales 

and potential pitfalls. Models elucidating both local and global ML properties based on counterfactuals or feature 

attributions warrant heightened exploration. Recent endeavours, paralleling genomic assessments of pre-malignant 

lesions within The Cancer Genome Atlas (TCGA) project, underscore the integration of diverse modalities—from 

imaging to proteomic and epigenetic—to delineate surrogate cancer gene prevention biomarkers. This 

comprehensive approach can revolutionize cancer diagnosis, treatment, and patient monitoring. 

Analysing multidomain genomic data emerges as another critical research trajectory, harnessing multimodal and 

multitask ML methods, such as early and late fusion strategies, to potentially outperform extant methodologies. 

Addressing the nuances between clinically akin cancers necessitates a granular focus on genomic and transcriptomic 

variations. Techniques like optical genome mapping and structural variant analysis can be pivotal across diverse 

cancer datasets, refining prognosis and therapeutic interventions. 

Lastly, delving deeper into circRNA dynamics—its localization, transportation, degradation, and a comprehensive 

interactome—alongside single-cell profiling, promises insights pivotal for refining cancer gene prediction 

methodologies [1]. 
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Table.6. The prospective avenues for the application of machine learning-based methods in gene expression data 

New Features Innovation in 

computational 

algorithm 

Finding 

Biomarkers 

Incorporating 

graph 

networks to 

integrate 

single-cell 

multi-omics 

data. 

Create 

approaches 

that are 

interpretable 

and provide 

clear 

explanations. 

Develop 

approaches that 

involve multi-

modal and multi-

task learning. 

Enhancing the 

discriminative 

performance of 

established 

learning 

algorithms can be 

achieved by 

incorporating 

supplementary 

input features, 

such as DNA 

methylations and 

mutations. 

Advancing 

gene 

expression 

analysis relies 

on the crucial 

development of 

innovative 

computational 

algorithms and 

benchmarking 

approaches. 

Explore 

techniques 

for 

pinpointing 

biomarkers 

unique to 

each type of 

cancer. 

Graph Neural 

Network 

(GNN) 

structures can 

facilitate the 

fusion of 

single-cell 

multi-omics 

data through 

the utilization 

of 

heterogeneous 

graphs. 

Highlight the 

importance of 

embracing 

interpretable 

machine 

learning 

models that aid 

in 

comprehending 

the decision-

making process 

and offer 

explanations 

for instances 

when these 

models 

encounter 

failures. 

 

 

 

The utilization of 

multimodal and 

multitask machine 

learning methods, 

employing both 

early and late 

fusion strategies, 

holds the promise 

of enhancing 

classification 

performance. 

VI. CONCLUSIONS 

Recent progress in deep learning offers significant promise for the analysis of intricate, high-dimensional datasets, 

especially in the realm of multi-omics data analytics. This review delves into the advancements made in applying 

both conventional machine learning and deep learning methodologies to analyse gene expression patterns, utilizing 

RNA-sequencing and DNA microarray data for detecting cancer. We provide an overview of prevalent data 

acquisition techniques in gene expression studies and highlight widely recognized datasets crucial for supervised 

machine learning tasks. Furthermore, the manuscript delineates a taxonomy encompassing techniques pertinent to 

feature engineering and data preprocessing—essential facets of gene expression analysis. 

The discussion transitions to machine learning-centric methodologies for gene expression evaluation, spotlighting 

the merits of deep learning techniques given their pronounced efficacy in this domain. We delve into prior 

endeavours utilizing neural network paradigms, including multi-layer perceptron, convolutional, recurrent, graph, 

and transformer networks. Notably, the employment of deep learning in categorizing cancers using RNA-Seq data 

has exhibited commendable accuracy, with numerous research endeavours achieving notable success rates across 

diverse cancer types. Anticipating the trajectory of this field, it becomes imperative to address existing hurdles like 

result generalizability, resilience, and interpretability, thereby catalysing advancements in cancer diagnosis and 

patient care. 

Significantly, this study stands out by offering an exhaustive review encapsulating recent endeavours in cancer 

classification via gene expression analysis. It bridges the understanding of feature engineering methodologies, 

pivotal datasets in this domain, and the application spectrum of both conventional and cutting-edge machine 

learning techniques. A distinctive facet of this review lies in spotlighting contemporary neural network 

architectures—specifically graph and transformer networks—that remain underrepresented in extant literature. 

Additionally, we underscore the predominant role of RNA-Seq methodologies, marking them as the prevailing data 

modality in contemporary research endeavours. 
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