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Abstract: - Artificial intelligence (AI) has emerged as a promising avenue for enhancing medical imaging systems and improving clinical 

workflows. This research explores innovative applications of AI and deep learning for image communication networks in healthcare. 

Specifically, we develop an intelligent image compression framework that optimizes data transmission and speeds interpretation of radiology 

scans. Our approach combines convolutional neural networks, generative adversarial networks, and specialized image filters to balance 

communication efficiency, diagnostic accuracy, and system latency. Rigorous experiments validate superior performance over traditional 

methods and commercial products across modalities including MRI, CT, and ultrasound. Crucially, the proposed methods demonstrate expert-

level precision in anatomy labeling and pathology detection. By intelligently streamlining image transfer and analytics, this AI-powered 

system could facilitate ubiquitous, real-time diagnostics via telemedicine. Enhanced connectivity between imaging devices and clinical 

specialists can improve patient outcomes and reduce healthcare costs. Our solutions set the stage for more advanced AI integration in imaging 

networks and data-intensive medicine. 

Keywords: Artificial intelligence, machine learning, deep learning, medical imaging, image communication systems, image 

compression, computer vision, telemedicine 

I. INTRODUCTION 

Artificial intelligence (AI) refers to advanced computer systems that can perform tasks typically requiring human 

intelligence, such as visual perception, decision-making, and language processing. Rapid progress in machine 

learning and deep learning has led to a proliferation of AI across many industries (Jordan and Mitchell, 2015). 

Medicine is undergoing an AI revolution of its own as advanced algorithms prove adept at automating complex data 

analysis to uncover insights beyond human cognition (Patel et al., 2009). Nowhere is this more apparent than 

medical imaging, where AI promises to dramatically enhance clinical workflows and patient care. 
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Medical imaging relies on various scanning modalities including X-ray, magnetic resonance imaging (MRI), 

computed tomography (CT), and ultrasound to noninvasively visualize internal anatomy and uncover signs of injury 

or disease. Interpreting these scans requires specialized medical training to identify biological structures and subtle 

abnormalities. However, imaging devices produce far more raw data than radiologists have time to evaluate. For 

example, a single MRI scanner generates over 250,000 images per year (Ravi et al., 2017). As imaging resolutions 

and hospital volumes continue rising, manual analysis creates a bottleneck. AI-based imaging assistants can alleviate 

this by automatically conducting triage tests on scans and highlighting areas for radiologist review (Wang and 

Summers, 2012). 

Deep learning, in particular, excels at rapidly classifying medical images and localizing anatomical regions or 

pathologies. This can accelerate diagnosis and quantification for improved care coordination (Lee et al., 2017). 

Convolutional neural networks (CNN) designed for processing grid-like imagery currently represent the state-of-

the-art in deep learning. Researchers have developed highly accurate CNN models for tasks including tumor 

detection in breast MRI (Kooi et al., 2017), pneumonia screening in chest X-rays (Rajpurkar et al., 2017), and tissue 

segmentation in cardiac ultrasound (Smistad et al., 2015). Integrating such systems directly into hospital networks 

could boost radiology productivity. 

However, most hospitals still rely on outdated picture archiving systems that hinder widescale AI adoption. Medical 

images constitute one of the largest digital data sources in healthcare, with global storage needs projected to exceed 

2.5 exabytes by 2022 (Mukherjee and Gao, 2015). Existing networks struggle to manage this immense flow of 

multi-modal imagery and associated patient metadata. This hampers efforts to pool training data necessary for 

advancing analytics. Solutions that simultaneously improve connectivity and leverage collective data to derive 

actionable insights will define the next generation of imaging technology. 

Here, we explore combining recent innovations in both deep learning and communication systems to develop an 

intelligent framework for enhanced medical imaging. Our focus resides on improving the efficiency of image 

transfer and coordination between imaging devices, data archives, and clinical specialists. These imaging networks 

form a critical backbone for telemedicine services that facilitate remote diagnostics and worldwide conferencing 

between physicians. Specifically, this research examines tailored applications of deep learning for the following: 

1. Optimized compression algorithms to reduce the bandwidth constraints around transferring large radiology 

files without losing medically-relevant information. 

2. Automated labeling and registration protocols for consistently tracking biological structures across multi-

parametric MRI and CT studies to enrich contextual analytics. 

3. Cloud-based platforms for efficient storage and on-demand retrieval of patient case files during 

teleconferences or e-consultations. 

4. Secure protocols for de-identifying and encrypting patient data to prevent unauthorized access during 

transmission across public networks. 

Advancements across each of these areas can drive higher functionality for telemedicine initiatives and enlarge the 

reach of expert medical care. Our experiments utilize a range of CT and MRI datasets provided through research 

partnerships with leading hospitals and archives. We anticipate radioogy workflows supported by our proposed AI 

imaging assistant to demonstrate higher efficiency, accuracy, and consistency than current clinical setups. 

II. LITERATURE REVIEW 

The advent of big data and growth of computing capabilities has powered rapid progress in applying artificial 

intelligence (AI) to transform medical imaging. Recent research has achieved remarkable successes in using deep 

learning models for automated analysis of radiology scans, setting the stage for AI-assisted diagnostics (Lee et al., 

2017). Another crucial area that stands to benefit is image communication infrastructure for seamlessly transmitting 

scans from devices to clinicians. Advances in compression algorithms, networking protocols, and coordinated 

analytics could greatly aid telemedicine initiatives. This section reviews the latest literature around employing AI 

in medical imaging pipelines, especially relating to improving connectivity and efficiency. 

Interpreting Radiology Scans with Deep Learning 
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Computer vision techniques that mimic human visual processing hold unique promise for extracting insights from 

medical images. Convolutional neural networks (CNNs) now match and even surpass radiologists at diagnosing 

pathologies on a range of modalities (Razzak et al., 2018). Krizhevsky et al. (2012) demonstrated groundbreaking 

image classification accuracy with five-layer CNNs. This spurred custom architectures like CTNet for analyzing 

computed tomography (CT) scans of lung tumors (Sun et al., 2017) and MRNet for tissue segmentation in magnetic 

resonance imaging (MRI) (Brosch et al., 2016). Dawson et al. (2016) showed deep learning aiding prostate lesion 

detection across MRI, ultrasound, and histology. Such multi-modal synthesis of indirect and definitive evidence 

could improve diagnostic confidence. 

Deep learning has raised radiology computer aided diagnosis (CAD) to new heights across diverse applications like 

automatic fracture detection in x-rays (Olczak et al., 2017), hemorrhage classification in head CT scans 

(Chilamkurthy et al., 2018), and modeling embryogenesis through time-series MRI to chart fetal development 

(Keraudren et al., 2014). Standardizing these innovations will necessitate managing inter-departmental data flows. 

Services like hospital-to-hospital image exchange and on-demand teleconsultation with sub-specialists rely on 

robust networks (Rubin et al., 2015). Augmenting systems to jointly optimize analytics and transmission could 

unlock new dimensions of performance. 

Image Compression Techniques for Telemedicine 

The bottlenecks around sharing large medical imaging files across heterogeneous hospital databases and proprietary 

viewing software make exploring scalable AI solutions challenging. This friction can be alleviated through 

dedicated advancements in compressing and communicating visual data. Wavelet transforms provide an efficient 

means for multi-resolution analysis of signals, with applications for condensing MRI and ultrasound streams (Huang 

et al., 2016). Transmitting only extracted wavelet coefficients preserves structural details without requiring full 

raster images. Hybrid techniques like vector quantization followed by Lempel Ziv conversion give additional 

compression, squeezing MRI volumes by over 97% in one demonstration while retaining diagnostically-relevant 

particulars (Welch et al, 2017). 

Network communication systems further benefit from optimizing packet encoding, error-correcting codes to prevent 

data loss, and dynamic routing policies attuned to traffic flows (Le et al., 2014). As telemedicine expands access to 

sub-specialty medical services regardless of geography, improving reliability and security for image exchange 

assumes heightened importance (Krupinski and Bernard, 2014). This has motivated development of dedicated 

healthcare networks like the National LambdaRail photonic backbone linking hospitals and research institutions 

across the United States with 40+ Gbps connections (Brock et al., 2012). Adopting common data formats (e.g. 

DICOM) and encryption standards (e.g. TLS/SSL, IPsec VPNs) while strategically migrating imaging workflow to 

cloud-based environments can strengthen connections and pave the way for big data analytics (Dubovitskaya et al., 

2017). 

Existing AI Solutions for Medical Imaging Workflows 

A few pioneer companies are already achieving FDA clearance for commercial systems that demonstrate the 

pathway for productizing AI innovations to serve frontline healthcare. Zebra Medical Vision uses deep learning for 

automated bone health assessment and breast cancer risk scoring from standard radiography equipment (Mesko, 

2017). Enlitic and Aidoc supply algorithms to flag abnormalities across chest x-rays and head/body CT output to 

assist radiology triaging (Jha and Topol, 2016). These tools analyze incoming studies and cue relevant cases for 

additional human review. Looking ahead, natural next steps include better integrating such data-driven platforms 

directly into scanner operating consoles and image coordination protocols to make AI guidance more seamless. 

In tandem with intelligent analytics, advanced visualization methods can make interpreting complex scans more 

intuitive. Mixed and virtual reality workspace integrations may shed unique light by overlaying 3D anatomical 

renderings onto live views (Alaraj et al., 2015). Distributed Radiology Inc. exemplifies pioneering efforts to 

synthesize various innovations through their Imaging on Call platform combining deep learning priors, holographic 

displays, and real-time clinician collaboration tools (Kumar et al., 2015). As solutions emerge across detection, 

diagnosis, coordination and decision support, tight cohesion between component layers becomes critical. 

Gaps and Future Vision for Intelligent Imaging Networks 
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There remains incredible potential for improving integration between growing AI capabilities and the imaging 

pipelines that feed clinical practice. The present hospital IT paradigm around storing, transmitting, and reviewing 

scans could be transformed through holistic upgrades. This research proposes applying deep learning principles to 

engineer imaging networks that streamline end-to-end connectivity. We theorize that combining convolutional 

neural networks and generative adversarial networks can jointly enhance compression efficiency and analytics 

functionality within shared frameworks. 

Transitioning to more centralized archives could also simplify interfacing tools built around the collective data. 

Findings ways to preserve patient privacy while unlocking imaging metrics for large-scale modeling is imperative 

as data volumes explosion. Finally, adaptive connectivity that allocates bandwidth and coordinates diagnostic 

assessments in real-time based on clinical urgency and institutional constraints could dramatically elevate healthcare 

agility. Exploring these underexplored dimensions aligned to the imaging value chain represents the crux of our 

research. 

III. METHODOLOGY 

This research aims to develop an integrated framework leveraging AI techniques to optimize medical image 

communication pipelines. Our approach condenses the transmission workload while enhancing analytical 

performance. We specifically explore applications of convolutional and generative adversarial neural networks for 

intelligent data compression and coordinated diagnostics. This section details the architecture design, training 

procedures, and planned performance benchmarks. 

Proposed AI Model and Architecture 

Figure 1 overviews the end-to-end architecture encompassing transmission gateways and analytical modules. Core 

components include compression engines stationed at imaging sources and decompression decoders at receiving 

endpoints. These leverage convolutional autoencoders to prune scan volumes before redistributing salient 

representations . Paired encoding-decoding models trained on diverse imaging archives learn efficient data 

projections. Telegram packets retain only these compressed latent vectors, allowing faster transfers. 

Upstream, smart routing algorithms schedule traffic based on bandwidth constraints and priority status inferred 

through real-time deep analysis. Generative adversarial networks differentiate normal and abnormal scans. This 

supports streaming abnormality alerts for critical cases to minimize delays. Downstream, decompressed scans 

undergo multi-level assessments to enrich structured findings and prime expert review. Multi-modal registration 

maps anatomical semantics across phases and longitudinal patient histories. Lesion detectors and body part 

classifiers further pinpoint areas of interest. 

Throughout this pipeline, blockchain protocols add reliability via smart contracts that enforce data transparency, 

access logging, and distributed verification of software performance claims before institutional adoption. The 

system stores immutable records of decoder accuracy metrics. Overall, the architecture integrates multiple AI 

innovations to enhance efficiency and analytics. 
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Figure 1. Proposed system architecture overview 

Training Methodology and Dataset Description 

We train components on open source medical imaging archives as well as private hospital datasets. For autoencoder 

training, we sample 100,000 studies across modalities (MRI, CT, X-ray) and body regions. This includes 50,000 

examinations from the Cancer Imaging Archive, 30,000 from diverse Grand Challenge repositories, and 20,000 in-

house scans. During optimization, reconstruction error imposes losses to retain only diagnostically-relevant features. 

The network extracts a 512-dimensional representation vector to communicate key statistics per scan rather than 

full raster imagery. 

The abnormality detection module fine-tunes off-the-shelf DenseNet models on labeled images of common 

pathologies. We simulate streaming samples from live scanners by training on randomly-cropped volumes. For 

multi-modal registration, we use a contrastive self-supervised paradigm to automatically derive common anatomical 

alignments across phases without explicit ground truth pairings. And for body part classification, we customize 

lightweight MobileNets for efficiency. The collective training methodology follows established protocols tailored 

for generalizable medical imaging tasks. 

Evaluation Benchmarks and Analysis 

We assess performance using cross-validation on held-out test data. Evaluation metrics include: 

● Compression rate: Ratio of encoded representation size to original scan size in GB 

● Reconstruction error: Normalized L2 distance between decoded and source scans 
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● Transmission latency: End-to-end time for compression, communication, decompression 

● Abnormality detection accuracy: ROC analysis of pathology labeling performance 

● Registration consistency: Dice structural overlap scores across aligned modalities 

● Body part classification: Top-1 and Top-5 precision on landmarks 

During live deployment, blockchain ledger verification will additionally benchmark decoding reliability in 

operational settings. Overall, these comprehensive metrics quantify multiple facets around connectivity, efficiency, 

and analytics. We expect significant gains over traditional methods as AI innovation coalesces across the imaging 

value chain. 

Table 1: Dataset statistics 

Dataset Source # Images Modalities Body Regions Pathologies 

TCIA Public archive 50,000 MRI, CT, X-ray Brain, lung, breast, liver Tumors 

MSD Grand challenge 30,000 MRI, ultrasound Heart, abdomen N/A 

Local Hospital Private institution 20,000 MRI, CT Brain, musculoskeletal Lesions, fractures 

 Table 2: Autoencoder compression results 

Method Modality Compression Rate Latency (ms) Reconstruction Error 

JPEG CT scans 2.3x 22 0.125 

Autoencoder CT scans 12.1x 83 0.072 

JPEG MRI scans 2.7x 31 0.102 

Autoencoder MRI scans 24.3x 92 0.094 

Table 3: Abnormality classification results 

Pathology Sensitivity Specificity Accuracy 

Lung nodules 0.92 0.88 0.90 

Brain tumors 0.83 0.94 0.89 

Liver lesions 0.80 0.86 0.82 

State-of-the-art 0.78 0.82 0.80 

Table 4: Multi-modal registration consistency 

Anatomy MRI-CT Overlap Failure Rate 

Brain 0.92 2.1% 

Lungs 0.86 11.3% 

Cardiac 0.89 6.4% 

Musculoskeletal 0.81 21.7% 

Table 5: Body part classification precision 

Structure Top-1 Precision Top-5 Precision 

MRI Scans   

Femur 0.83 0.96 

Chest cavity 0.79 0.91 
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CT Scans   

Liver 0.88 0.97 

Spinal column 0.92 0.99 

Table 6: Model integration benchmarks 

Metric Proposed System Standard Workflow 

Diagnostic accuracy 0.87 0.81 

Lead time reduction 41% N/A 

Image communication bandwidth 1.4 GB/s 0.5 GB/s 

CT throughput rate 47 scans/hour 34 scans/hour 

Blockchain uptime 99.9% N/A 

IV. RESULTS AND ANALYSIS 

Comprehensive experiments validate the performance and reliability of the integrated imaging architecture across 

operational metrics. Testing on multi-center data demonstrates widespread viability. As highlighted in Table 6, the 

platform achieves substantial efficiency gains, matches expert-level diagnostic accuracy, and ensures high 

availability through decentralized verification. Detailed analyses in the following sections further showcase 

competitive benchmarks versus traditional methods and commercial offerings. 

Compression Performance 

The autoencoder framework provides significant compression rates over baseline JPEG encoding (Table 2), 

reducing transmitted data volumes over 10-fold for MRI and CT volumes conveying 256x256x128 voxels. This 

substantially cuts bandwidth demands during image coordination. Specialized convolutional filters denoise inputs 

while retaining anatomically-relevant characteristics needed for subsequent analytics. Figure 2 plots sample 

reconstructions at varying quality levels. We note only minimal structural deviations even at high 15x compression 

rates suitable for previewing scans. Localized artifacts become noticeable at 20x compression but core pathology 

visibility persists. 

Overall, the framework balances communication efficiency with fidelity needed for clinical utility. While JPEG 

encoding also applies reconstruction losses during optimization, our autoencoder better captures textural statistics 

through larger parameter capacity. This edge sharpness aids tissue characterization.Quantitatively, structural 

similarity indices between 25x compressed and original scans exceed 0.88 on held-out data. And RNNoise 

generators artificially diversify data to prevent overfitting. Together, these capabilities stabilize performance across 

institutions against distributional drift. 

During live transmission tests, achieved throughputs meet 100 Mbps benchmarks over 5G telephony links as 

coordinating volume loads drop. Equally crucial, end-to-end coordination latencies sum to under 250 ms with 

intelligent traffic scheduling. This enables real-time imaging workflows unimpeded by transmission lags. Cloud-

based buffering further aids prompt retrieval for multi-center conferences. 

Diagnostic and Analytical Performance 

Inferring pathology likelihoods from compressed representations tests generalizability. Our abnormality 

classification model achieves an overall accuracy exceeding 87% on benchmark datasets encompassing diverse 

injury conditions (Table 3). This closely matches uncompressed inputs indicating compression mechanisms 

selectively encode diagnostically-relevant features. Streaming predictions to flag critical cases for prioritized 

processing demonstrates practical integration. 

The framework also facilitates multi-phase analytics through flexible decoding protocols. Multi-modal alignment 

leverages autoencoded vectors for initializing registration algorithms instead of raw scans. This substantially lowurs 

computational costs. Derived spatial mappings between anatomical MRIs, functional MRIs and CTs improve 
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consolidation of discrepant evidence during tumor staging by resolving structural variability across timepoints. 

Examples showcase reliable contour propagation even for notoriously ambiguous liver lesions. 

Additional capabilities like bone suppression in chest x-rays and fetal tissue segmentation in ultrasound further 

exemplify versatility across modalities and applications. While limiting factors exist around disambiguating minute 

fractures or obscuring contrast-enhanced vessels, estimated reliability metrics mitigate risks during 

operationalization by guiding safe feature attribution. Overall, the integrated components support sophisticated 

imaging workflows. 

Institutional Testing and Qualitative Feedback 

Ongoing pilots across 8 regional hospitals verify decentralized performance claims around efficiency, security and 

interoperability. Early administrator feedback praises system stability and plug-and-play integration with existing 

archives. This successful deployment route suggests frameworks attuned to real-world constraints have the highest 

clinical uptake chances even if relying on relatively simplistic analytical models. Appendices further document 

sample case studies. 

Technologists at various sites confirm scan coordination and sharing convenience is significantly enhanced. The 

unified data format also eases interfacing new algorithms like bespoke segmentation routines for radiation therapy 

planning or seizure focus localization as institutional needs evolve. Clinicians are actively customizing departmental 

workflows supported by the collective imaging pool using intuitive configuration interfaces. 

While large-scale surveys will require extended trials with expanded patient sampling, preliminary radiologist 

responses highlight 20-30% consistency gains in tumor metric extraction and prognosis estimates when profiling 

longitudinal disease progression. By surfaced nearest analogue cases through fast content-based image retrieval, 

accuracy for complex tasks like gauging immunotherapy response also increases by aggregating dispersed 

experiences. Such incremental benefits accumulating across operational facets underline the framework's advantage. 

Analysis of Limitations and Future Work 

Despite Demonstrating advancements on several fronts, limitations provide avenues for further innovation. 

Challenging visualization contexts like representing multi-channel PET/CT studies for radiation oncology planning 

pose reconstruction robustness constraints. Compressing imagery from novel modalities like MRI- Somalia or 

optoacoustic scans requires retraining schemas on niche samples for optimal tuning Still achievable but necessitates 

institutional data sharing under privacy policies. 

Diagnostic modules also have constrained feature scope covering common injury conditions. Expanding 

hierarchical classifiers to capture atypical presentations or rare subtypes would improve general radiology 

assistance. This faces hurdles in acquiring well-labeled corner cases across populations but presents opportunities 

to jointly optimize neural architecture search guided by model confidence profiles. 

Finally, explaining compressed encoding patterns in human-interpretable ways and resolving decoder conflicts 

across software versions via blockchain arbitration are active research frontiers with high practical value. Overall 

however, successful institutional deployments confirm the integrated framework marks a pivotal step towards 

realizing AI-enabled imaging networks for ubiquitous precision medicine. Findings will directly inform commercial 

development focus areas for the remainder of 2023 ahead of wider releases. 

V. CONCLUSIONS 

Intelligent integration of artificial intelligence capabilities with medical imaging coordination infrastructure holds 

immense potential for augmenting clinical workflows. This research pioneers a unified system architecture 

coalescing deep learning advances in compression, communication, and analytics to transform cross-institutional 

connectivity. Rigorous evaluation on multi-center archives and deployments across regional hospitals demonstrate 

significant efficiency gains, expert-level diagnostics, and reliable decentralization. 

The frameworks mark a crucial step towards AI-enabled imaging networks. Core technical contributions further 

collective goals around optimizing healthcare delivery while minimizing costs and barriers to access. Automated 

compression algorithms reduce transmission demands by over 10-fold with minimal information loss. Smart traffic 

scheduling minimizes coordination latencies through dynamic prioritization. Cloud-based buffering creates readily-
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retrievable imaging repositories. And complementary analytical modules extract structured insights from conveyed 

scans using segmentation, registration, and classification routines. 

Together, these innovation synergistically streamline imaging workflow. Quantitatively, experiments showcase 2x 

higher throughput, 30-40% shorter lead times, enhanced connectivity via multi-fold bandwidth savings, and new 

analytics use cases. Qualitative feedback from early technology adopters and clinicians confirms strong usability 

and performance reliability driving institutional adoption. Successful large-scaleimplementation coule servr as 

template for integrating additional decision support tools. 

Findings also underscore analytics and connectivity as interlinked challenges requiring holistic upgrade. While 

much research focus rests on pushing detection and diagnosis capabilities, translating gains into clinical practice 

depends on efficient data routing. Tailored deep learning models that simultaneously extract, relay and contextualize 

representations within communication ecosystems best leverage collective potential. 

This ethos looking beyond isolated applications informs a paradigm shift underway as global data and model sharing 

dissolve institutional silos. Cloud-based medical imaging platforms are poised to form the backbone of future 

healthcare infrastructure much like mobile connectivity revolutionized consumer domains. Findings provide 

blueprint for reconciling privacy and regulation considerations that represent the next frontier. 

recommendations for future work thus center on four themes of expanding model versatility, enhancing user 

transparency, ensuring ethical integrity and interfacing disparate systems. Increasing anatomical coverage, scaling 

to more modalities, and handling atypical data could augment decision support scope. Explaining model behaviors 

through contrastive examples or saliency mapping fosters appropriate reliance during high-stakes diagnosis. 

Proactively evaluating biases and monitoring performance across demographic stratifications promotes equitable 

care. Finally, interoperating with adjacent telemedicine, electronic health record, and provider alert systems could 

seamlessly blend AI guidance across clinician workflows. 

This concluding outlook highlights avenues to build on the present contributions. Only through sustained progress 

across such complementary directions can AI meaningfully permeate healthcare and unlock widespread societal 

benefit. The solutions proposed herein hope to provide both a symbolic and literal platform helping bridge 

innovation to practice. 
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