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Reinforcement Learning with Human 

Feedback: A CartPole Case Study 

 

Abstract: - This research delves into the integration of human feedback within reinforcement learning (RL) algorithms, with a specific focus 

on the CartPole environment as a testbed. We present RLHFAgent, a revolutionary RL agent devised to capitalize on human guidance 

during training for the purpose of expediting the learning process. Through the acquisition of feedback from a human operator, RLHFAgent 

adapts its policy in a more efficient manner, resulting in enhanced performance when it comes to balancing the pole. Our approach involves 

the training of a neural network model that approximates the policy function, mapping observations to actions, and subsequently updating 

this model based on human feedback. By means of a series of experiments, we showcase the efficacy of RLHFAgent in learning the art of 

balancing the pole, as demonstrated by the consistent rise in episodic rewards and the decrease in episodic loss over the course of training 

episodes. These findings indicate that the incorporation of human intuition into RL algorithms can augment their ability to adapt and expedite 

the learning process in intricate environments. In essence, this study contributes to the ongoing endeavours aimed at bridging the gap 

between RL algorithms and human expertise, thereby paving the way for more efficient and effective learning strategies in both simulated 

and real-world scenarios. 
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I.INTRODUCTION 

Reinforcement Learning (RL) is a fundamental paradigm in the field of artificial intelligence, empowering 

agents to make sequential decisions in dynamic environments. However, despite its progress, RL faces challenges, 

particularly in scenarios where the state and action spaces are high-dimensional or rewards are sparse. The CartPole 

environment serves as an example of such a challenge, as it is a classic benchmark problem in RL that requires the 

agent to balance a pole upright on a moving cart. Although this task may seem simple, it actually presents significant 

obstacles, demanding precise control and coordination to maintain stability. 

The main focus of this paper is on the slow learning process of RL algorithms, which can limit their applicability 

in real-world settings. Traditional methods often require extensive interactions with the environment to achieve 

satisfactory performance, which can be problematic in domains where rapid learning is crucial. 
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The motivation behind this research stems from the recognition of the value of human intuition and expertise in 

accelerating the learning process. [3] By incorporating human feedback, we aim to guide RL algorithms more 

effectively, leading to faster convergence and improved performance. This motivation is particularly relevant in 

complex or poorly understood environments, where human oversight can provide valuable insights. 

To tackle this challenge, we introduce RLHFAgent—a new RL agent specifically designed to learn in the 

CartPole environment with the aid of human feedback. RLHFAgent utilizes a neural network model to approximate 

the policy function, which maps observations to actions. During training, the agent interacts with the environment, 

seeks feedback from a human operator based on its actions, and updates its policy accordingly. This iterative process 

enables RLHFAgent to adapt more efficiently to the task at hand. Experimental results demonstrate the effectiveness 

of RLHFAgent in learning to balance the pole upright. By integrating human feedback into the training process, 

RLHFAgent achieves faster convergence and superior performance compared to conventional RL methods. Notably, 

the episodic rewards consistently increase over training episodes, indicating progressive improvement. At the same 

time, the episodic loss decreases as the agent refines its predictions, highlighting the effectiveness of incorporating 

human guidance. 

Hence, this study highlights the potential of leveraging human feedback to enhance the learning efficiency and 

adaptability of RL algorithms. By bridging the gap between RL techniques and human intuition, RLHFAgent 

emerges as a promising approach for effectively tackling complex tasks. These findings contribute to the ongoing 

advancement of RL methodologies, with implications for a wide range of real-world applications. 

II. LITERATURE REVIEW 

Previous researches have delved into diverse approaches aimed at enhancing the performance of reinforcement 

learning (RL) algorithms. These approaches encompass deep reinforcement learning, policy gradient techniques, 

and actor-critic frameworks. Moreover, a number of scholarly inquiries have sought to examine how the integration 

of human feedback within RL frameworks can contribute to the optimization of learning efficiency. We have 

examined a number of notable academic papers that delve into the domain of interactive reinforcement learning 

with human feedback, each presenting distinct perspectives and methodologies to enhance the performance of 

learning. 

"Human-centred Reinforcement Learning: A Survey" [1] offers a comprehensive overview of cutting-edge 

algorithms in human-centred RL. This survey paper thoroughly discusses various interpretations of human 

evaluative feedback and investigates research on agents learning from both human feedback and environmental 

rewards. Furthermore, it explores strategies aimed at improving the efficiency of human-centred RL algorithms. 

This survey sheds light on the dynamic landscape of human-centred RL, emphasizing the crucial role of human 

feedback in enhancing learning efficiency. 

"Provably Feedback-Efficient Reinforcement Learning via Active Reward Learning" [2] introduces an RL 

algorithm based on active learning that explores the environment without requiring a predefined reward function. 

Instead, it solicits queries about task rewards from a human instructor at specific state-action pairs, ensuring a policy 

that is nearly optimal with high probability while effectively handling random noise in the feedback. Despite its 

promising approach, the paper recognizes challenges such as the design of accurate reward functions and the need 

for substantial human feedback. 

"A Review on Interactive Reinforcement Learning from Human Social Feedback" [5] presents a comprehensive 

review of interactive RL methods that leverage human social feedback. It discusses various frameworks such as 

TAMER, VI-TAMER, and Actor-critic TAMER, along with methodologies like Deep TAMER for learning from 

human feedback. Moreover, the review explores transparent learning mechanisms and the combination of multiple 

modal inputs for agent training. Despite its breadth, the review highlights challenges such as sample efficiency and 

the diverse interpretations of human feedback. 

Lastly, "Reinforcement Learning with Human Teachers: Evidence of Feedback and Guidance with Implications 

for Learning Performance" [4] investigates RL with human teachers, employing modified action selection 

mechanisms and attention direction channels within a Q-Learning algorithm. By collecting data from expert training 

sessions and conveying rewards as feedback messages, the study aims to enhance learning performance. However, 

it acknowledges limitations, including assumptions about the interpretation of feedback and reliance on standard 

algorithms. 

These research papers collectively contribute to a deeper comprehension of interactive reinforcement learning 

with human feedback, offering a range of approaches and methodologies to address the challenges and opportunities 
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in this evolving field. Through their discoveries, they pave the way for more effective and efficient learning 

strategies that integrate human expertise with machine learning techniques. 

III. METHODOLOGY 

The RLHFAgent is an agent that has been specifically developed to integrate human feedback into its training 

process. It employs a neural network model to effectively approximate the policy function, which facilitates the 

mapping of observations from the environment to corresponding actions. [8] 

The CartPole environment is instantiated through the utilization of OpenAI Gym, a framework specifically 

designed for the purpose of constructing and evaluating reinforcement learning algorithms. The CartPole 

environment emulates a traditional control problem in which a pole is affixed to a cart by means of an unactuated 

joint. The cart is capable of traversing a frictionless track in a single dimension. The objective is to maintain the 

pole in an upright position by exerting appropriate forces to the left or right on the cart. In the event that the pole 

exceeds a particular angle or the cart surpasses a certain threshold of movement, the episode comes to an end. In 

this particular environment, the state encompasses four continuous variables that represent the position and velocity 

of the cart, as well as the angle and velocity of the pole at its apex. The actions performed by the agent are discrete, 

affording it the capability to exert force on the cart in order to stabilize the pole, either by pushing it to the left or to 

the right. The objective of this task is to sustain the pole in an upright position for as long as possible, while 

simultaneously preventing the cart from deviating excessively from the central position. A reward of 1 is granted 

for every time step in which the pole remains upright. The episode concludes if the pole tilts beyond a predetermined 

angle or if the cart exceeds a specified threshold of movement. 

 
Graph 1 A graphical representation of the CartPole Environment 

Following are the steps involved in the working of the proposed model: 

1. Initialization: The agent is initialized with the CartPole environment, and the neural network model is 

constructed. 

2. Training Loop: The agent runs multiple episodes of training in a loop. In each episode: 

a. The system has been refreshed, and the preliminary data capture has been initiated. 

b. The agent iteratively selects actions based on its current policy and interacts with the environment. 

c. For each step in the episode: 

• The agent generates an action based on the observation using its policy. 

• The action is executed in the environment, and the agent receives a reward and the next observation. 

• The agent solicits feedback from a human operator based on its action. 

• The agent updates its policy using the observed feedback. 

• The process continues until the episode terminates. 

3. Feedback Mechanism: The feedback_from_reward_model function determines the feedback based on the 

current observation and the action taken by the agent. In this implementation, if the pole tilts too far from the 

upright position, no feedback is provided (feedback = 0); otherwise, positive feedback (feedback = 100) is given. 

4. Model Update: The update_policy method updates the agent's policy based on the observed feedback. It 

computes the loss between the predicted action probabilities and the feedback-guided action probabilities and 

performs a single training step using the observed feedback. 
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5. Visualization: At each step of the episode, a visualization of the CartPole environment is generated using 

Matplotlib, showing the cart's position, the pole's angle, and the action taken by the agent. 

6. Episodic Monitoring: The episodic_rewards list keeps track of the total reward obtained in each episode, while 

the episodic_loss list records the loss incurred during policy updates. 

7. Training Termination: The training loop continues for a predefined number of episodes (n_episodes), after which 

the training process concludes. 

Therefore, in summary, RLHFAgent acquires the skill of maintaining the pole in an upright position within the 

CartPole environment through a repetitive process of engaging with the surroundings, obtaining input from a human 

operator, and adapting its strategy in accordance with the received input. 

 

 
Fig. 1 Working Flowchart of the System 

IV.RESULTS 

In this section, the findings acquired from the assessment of RLHFAgent in the CartPole setting are presented, 

with a particular focus on its performance metrics and implications. 

The performance metrics monitored during experimentation encompass episodic rewards and episodic loss. 

Episodic rewards correspond to the cumulative reward acquired by RLHFAgent in each training episode, indicating 

its capability to effectively stabilize the pole in an upright position. Conversely, episodic loss gauges the disparity 

between anticipated actions and actions guided by feedback, providing valuable insights into the refinement of the 

agent's policy across training episodes. 

 
Graph 2 Episodic Rewards 

Our experimental outcomes manifest a distinct tendency of enhancement in both episodic rewards and episodic 

loss throughout the training process. Initially, the performance of RLHFAgent may display variability as it explores 

the environment and learns from trial and error. Nonetheless, as the training progresses, the agent's proficiency in 

maintaining the pole in an upright position steadily improves, leading to higher episodic rewards. Simultaneously, 

the episodic loss diminishes, indicating that the agent's policy becomes more refined and aligned with the desired 

actions. The observed enhancements in episodic rewards and episodic loss underscore the efficacy of RLHFAgent 

• Initialization CartPole Environment Setup

• Training Loop

• Episode Refresh Environment & Data Capture Initiated 

• Action Selection Based on Current Policy

• Interaction with Environment

• Feedback Solicitation from Operator

• Policy Update Based on Feedback
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• Episodic Monitoring Record Rewards and Losses
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in acquiring the skill of balancing the pole in an upright position with the support of human feedback. By leveraging 

human intuition and expertise, RLHFAgent expedites the learning process and adapts more efficiently to the given 

task. These findings highlight the potential for collaborative approaches that integrate human feedback with machine 

learning techniques to enhance the efficiency and adaptability of learning in RL algorithms. Furthermore, a 

sensitivity analysis and comparative studies with baseline RL algorithms can yield further insights into the 

robustness and relative effectiveness of RLHFAgent. Statistical analysis can also be employed to evaluate the 

significance of the observed improvements and validate the reliability of the results. 

In summary, the outcomes derived from the evaluation of RLHFAgent in the CartPole environment effectively 

demonstrate its efficacy in expediting the learning process and improving performance. By harnessing human 

feedback, RLHFAgent exemplifies the potential for collaborative approaches that bridge the gap between human 

intuition and machine learning techniques in RL algorithms. These findings contribute to the ongoing advancement 

of RL methodologies, with implications for a wide range of real-world applications. 

 
Graph 3 Episodic Loss 

V. CONCLUSION 

In this study, we have examined the incorporation of human input into reinforcement learning (RL) algorithms 

by creating and evaluating RLHFAgent in the CartPole setting. The outcomes from our examination illuminate the 

efficacy of utilizing human instinct to expedite the learning process and enhance performance in dynamic 

assignments. 

The empirical outcomes illustrate that RLHFAgent, by integrating human feedback, accomplishes expedited 

learning and superior performance in comparison to conventional RL methods. Through successive interactions 

with a human operator, RLHFAgent adjusts its policy more effectively, resulting in quicker convergence and 

improved task performance. This emphasizes the potential for collaborative approaches that utilize human expertise 

in conjunction with machine learning techniques to effectively address complex problems. Furthermore, the capacity 

of RLHFAgent to adapt its policy based on human guidance underscores its adaptability and flexibility in dynamic 

environments. By bridging the gap between RL algorithms and human intuition, RLHFAgent presents a promising 

strategy for addressing real-world challenges where rapid learning and adaptation are vital. 

In conclusion, the research conducted on RLHFAgent in the CartPole environment contributes to the ongoing 

advancement of RL methodologies, with implications for diverse real-world applications. By leveraging human 

feedback, RLHFAgent demonstrates the potential for more efficient and effective learning strategies, paving the 

way for collaborative approaches that combine human expertise with machine learning techniques to effectively 

tackle complex tasks. 

VI. FUTURE WORK 

Moving ahead, there exist numerous promising avenues for future exploration that can further enhance the 

capabilities of RLHFAgent. One such avenue involves delving into advanced techniques for soliciting and 

incorporating human feedback. Preference-based learning and interactive learning strategies offer intriguing 

possibilities for augmenting RLHFAgent's capacity to learn from human guidance in a more nuanced and adaptable 

manner. [6] By delving into these advanced feedback mechanisms, researchers have the potential to unlock novel 

avenues for enhancing the agent's performance and adaptability in dynamic environments. 

Moreover, an important direction for future investigation is to assess RLHFAgent's ability to generalize across 

diverse RL domains and environments beyond its current application in CartPole. Exploring how effectively 
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RLHFAgent transfers its learned policies and strategies to different tasks and scenarios can yield valuable insights 

into its robustness and versatility. By evaluating its performance across a range of tasks, researchers can gain a 

deeper understanding of the factors that influence RLHFAgent's effectiveness and identify areas for improvement. 

In addition, conducting user studies represents a crucial subsequent step in the development and deployment of 

RLHFAgent in real-world settings. By involving users in practical scenarios and gathering feedback on the agent's 

usability and effectiveness, researchers can gain valuable insights into its performance in realistic environments. 

[11] User feedback and interaction data can inform iterative refinements to the agent's design and optimization of 

its performance, ultimately enhancing its applicability and impact in real-world applications. 
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