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Abstract: - The flipped classroom model has become increasingly popular in education, altering the traditional methods of teaching. It is 

important to understand and acknowledge how students learn within this framework in order to optimize instructional strategies and 

promote personalized learning. This study investigates the use of Sequence Modeling with Recurrent Neural Networks (RNNs) to identify 

patterns in student learning behavior within a flipped classroom setting. The proposed deep learning architecture utilizes RNNs to analyze 

sequential patterns in students' interactions with the flipped classroom materials, while also incorporating attention mechanisms to better 

detect important patterns and temporal dynamics in the learning process. Multimodal learning techniques are also employed, combining 

data from various sources to gain a comprehensive understanding of student behavior. Additionally, clustering techniques using 

autoencoders are explored to group students with similar learning behaviors. Predictive models, such as RNN or LSTM networks, are 

developed to forecast future learning behaviors and provide insights into potential challenges or successes for individual students. The 

effectiveness of this framework is evaluated using real-world data from flipped classroom implementations, with performance metrics 

like recall, precision, and accuracy used to assess the success of the sequence modeling approach in recognizing and predicting student 

behavior patterns. Overall, the application of deep learning methods, specifically sequence modeling with RNNs, demonstrates potential 

for improving personalized learning experiences and facilitating proactive interventions to support diverse student needs. 

Keywords: Flipped Classroom Model, Recurrent Neural Networks (RNNs), Sequence Modeling, Long Short-Term 
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I. INTRODUCTION: 

A crucial aspect of modern education is the classroom instruction. Improving the quality of student learning 

within the classroom not only boosts their academic success but also encourages the use of more engaging 

teaching approaches. In both online and large classroom settings, it can be challenging for teachers to accurately 

assess students' listening and ensure adherence to classroom rules using traditional methods [1]. By incorporating 

intelligent technology to detect and provide feedback on students' learning behavior and listening quality, teachers 

can better monitor their students in real-time. However, implementing such a system can be challenging due to 

complex models or high costs. Therefore, this study utilizes a DL algorithm as foundation and prunes it to 

maintain satisfactory performance while ensuring practical implementation. 

Recognizing emotions in real-time scenarios poses challenges, demanding sophisticated algorithms to precisely 

interpret facial expressions. Despite these hurdles, progress in computer vision technology has enabled the 

development of more effective FER systems. These systems can adjust course material based on a learner's 

expressions, leading to improved learning and engagement [2]. This allows instructors to create personalized 

learning experiences that meet the individual preferences and needs of each student. Our research indicates a 

significant link between a learner's emotions and their engagement and interest levels during online lectures. This 

insight can be leveraged to customize content and boost participation on digital learning platforms. In essence, our 

study underscores the promise of employing facial expression recognition to enhance the efficacy of adaptive 

learning systems and foster academic achievements. 

Technology plays crucial role in delivering and improving education in the realm of online learning. The most 

effective tool for teachers to facilitate collaboration and boost student engagement is video conferencing. It not 

only serves as an efficient means of teaching, but also as a mode of communication in this virtual setting. There 

are several platforms available for video conferencing, such as WebEx, Go To Meeting, Skype, Zoom, Microsoft 

Teams, for business. These platforms enable real-time communication through live audio and video between 

teachers and learners [3]. This immediate connectivity fosters a sense of human connection, allowing educators 

and students to establish their presence in the online learning environment. By effectively utilizing video 

conferencing, teachers can provide prompt feedback to students, bridging the psychological and communication 
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gap between them. Additionally, video conferencing offers features like wireless screen sharing, whiteboard 

sharing, interactive chat rooms, opinion polls, and discussion platforms to enhance the learning experience. 

FCs has become a popular subject, especially in higher education, and there has been a significant rise in research 

on their effectiveness. These classrooms differ from traditional ones in that the material typically taught during 

class is instead given beforehand, outside of class. As a result, students primarily learn on their own time, 

allowing for more interactive and engaging learning experiences during face-to-face sessions [4]. The success of 

FCs heavily relies on educational technology, which provides easier access to resources. This approach prioritizes 

student involvement as they actively construct their own knowledge. 

Flipped classrooms (FC) offer an enhanced learning experience by providing more flexible learning opportunities 

and promoting active learning, resulting in increased student engagement. Studies have shown that student 

performance is generally better in FCs compared to traditional classrooms. However, the findings from research 

on FCs are mixed, with some reporting positive results ranging from small to moderate effects, while others 

finding no significant difference. Most of these studies focused on STEM subjects, with business being 

unspecified [5]. In cases where business courses were included, no discernible impact was found. Additionally, 

research suggests that FCs may be more beneficial for post-graduate students compared to undergraduate students 

who tend to have lower motivation levels. Student perceptions of FCs have also been examined, and most students 

believe that they provide a more positive learning experience and facilitate better retention of knowledge. 

However, it should be noted that these benefits are mostly observed in students who already possess high levels of 

motivation and may be reduced if negative perceptions of FCs exist among students [6]. 

The implementation of FCs is made simpler by advancements in technology. E-learning resources play a crucial 

role in overcoming the limitations of traditional classrooms. Specifically, these technological tools aid in pre-class 

preparation through the utilization of e-books, audio slides, and videos. Research has shown that, compared to 

reading materials, videos have a positive impact on student performance, although this effect is less significant for 

undergraduate students. Therefore, it is important for videos to promote student engagement rather than just 

passive viewing [7]. To enhance interactivity, tests and quizzes can be incorporated into online materials to make 

them more meaningful and beneficial for students 

The use of advanced technologies has become crucial in the ever-changing field of education to improve the 

learning process. A significant tool in this regard is Sequence Modeling with RNNs, which holds great promise in 

analyzing and optimizing student learning patterns in a flipped classroom environment. The flipped classroom 

model shifts the traditional teaching method by providing online instructional materials, giving students the 

freedom to learn at their own pace outside of class. In this progressive educational setting, monitoring and 

comprehending student behavior is vital for customizing the learning experience to meet individual needs [8]. 

This is where Sequence Modeling with RNNs emerges as an innovative solution. 

RNNs are a specialized category of artificial neural networks crafted to process data arranged in a sequential 

fashion. This makes them particularly well-equipped for identifying and understanding the time-based connections 

that are inherent in the learning process. By examining the sequence of interactions, RNNs can uncover patterns in 

how students interact with pre-class materials, engage in discussions, and grasp important concepts during class 

activities. This brings together the worlds of RNNs and FC methodologies, demonstrating the potential for these 

technologies to transform how we recognize patterns in student learning behavior. As we delve deeper into the 

intricacies of sequence modeling, we will discover how RNNs can offer valuable insights into student 

participation, understanding, and overall academic performance. Ultimately, this has the potential to enhance the 

educational experience by providing personalized and effective learning paths for students. These advancements 

pave the way for a data-driven approach to education, creating an environment where educators can refine their 

teaching strategies and students can benefit from tailored and adaptive learning methods. The major contribution 

of the article is described below. 

1.1 Research Objectives: 

• RNN-based sequence modeling is a valuable tool for identifying and recognizing unique learning behavior 

patterns. This allows for the creation of personalized learning paths that cater to the specific needs, 

preferences, and progress of students.  
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• With RNNs, it is possible to design adaptive instruction that dynamically adjusts the delivery and sequence of 

educational content, ensuring that students receive information in a way that suits their preferred learning 

styles and pace. By adapting to individual learning behaviors, this system promotes increased student 

engagement.  

• Furthermore, tailored content and personalized learning experiences make the educational journey more 

meaningful and enjoyable for each student. The use of RNNs for sequence modeling also provides educators 

and administrators with data-driven insights into student learning behaviors, which can inform decision-

making and lead to improvements in curriculum design, teaching methods, and overall educational strategies.  

• In a flipped classroom framework, wherein students engage with instructional materials outside conventional 

class hours, RNN-based sequence modeling boosts the efficacy of both pre class and in class activities by 

tailoring them to individual learning styles. 

II. RELATED WORKS 

In [9], facial emotion detection system using ensemble models to monitor student attentiveness in online learning, 

achieving recognition rates above 90%. By providing continuous feedback, instructors can adapt teaching methods 

to enhance student engagement and learning outcomes. In [10], discovering a positive relationship among the 

quality of educational systems, ease of use, and overall satisfaction, while questioning the influence of 

information quality, is a key focus. This underscores the significance of refining educational materials and taking 

into account diverse factors to enhance student satisfaction and engagement in online learning settings. These 

findings provide valuable insights for educators and platform developers.. In [11], findings suggest a preference 

for anonymity despite its potential to create a less productive atmosphere, prompting suggestions for optimizing 

anonymity features in collaborative learning tools. In [12], investigates how resourceful behaviors like financial 

bootstrapping and bricolage influence innovative behavior among student entrepreneurs in Spain. Findings 

suggest that bricolage mediates the relationship between financial bootstrapping and innovation, highlighting 

implications for resource management in fostering innovation among student ventures. In [13], the impact of 

mindful agency on college students' connection with online teaching, mediated by online learning self-efficacy 

and self-disciplined learning online. The findings contribute to both theoretical comprehension and practical 

advice for enhancing identification with online teaching.. In [14], an AI-enabled tool for generating reports on 

engaging teaching videos in higher education, utilizing deep learning for video analysis. The tool aids in 

identifying and enhancing engagement behaviors of teachers during video conferencing, offering insights for 

education institutes and instructors to improve online learning experiences. 

In [15], factors influencing undergraduate students' adoption of AI chatbots for educational use, finding that 

perceived benefits, compatibility, trialability, and trust significantly influence adoption intention. Surprising 

results suggest the need for further investigation into the dynamics of perceived ease of use and usefulness in 

chatbot advocacy. In [16], the relationship between students' environmental mindset and their entrepreneurial 

actions, revealing that entrepreneurship education approaches can influence this connection, particularly with 

competency-focused methods reinforcing it. Moreover, the moderating impact of competency teaching methods is 

augmented by mastery-learning motivations, advocating for active learning strategies in entrepreneurship 

education. In [17], identifies two distinct learning strategies in a flipped classroom: "Prepared" students access 

resources ahead of class, while "Assessment-focused" students engage post-class for upcoming assessments. 

"Prepared" students show higher performance, suggesting structuring flipped classrooms with frequent, low-stakes 

assessments can mitigate procrastination and enhance effectiveness. In [18], developed a MOOC data from 

AdelaideX in 2019 and 2020, focusing on engagement, semantics, and sentiment/stress to understand their impact 

on student outcomes is concentrated. Results show that stress had small influence on academic attainment and 

remained proportional consistent across online courses in the studied period. Two student cases provide additional 

context to the findings. In [19], the ANN to identify key factors impacting undergraduate academic performance, 

highlighting sleep quality, questioning, class attendance during lectures as highly correlated with high grades. The 

research showcases the effectiveness of student data gathering and ML for understanding the nuanced relationship 

between study behaviors and academic achievement. 

In [20], introduced ODL-BCI, an optimized deep learning model designed for real-time classification of students' 

confusion levels using EEG data. It surpasses current state-of-the-art methods, achieving an accuracy 
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improvement of 4% to 9%. A source codes for ODL-BCI implementation are available for access, providing a 

valuable tool for BCI research in educational condition. In [21], influence of various peer assessment modes on 

students' behaviors and performance in musical theater. Result show that the integrated peer scoring and 

commenting mode was most effective which leading to improved performance, critical feedback, and engagement 

with assessment materials. In [22], an CM-TTG approach demonstrates a notable enhancement in ninth-grade 

students' learning achievements when compared to the conventional two tier test based gaming method. However, 

no significant variances were observed in learning motivation, flow experience, or cognitive load between the two 

groups. Interestingly, distinct learning behavior patterns were noted among high and low achieving students 

within CM-TTG approach. In [23], this study examines SRL behaviors of undergraduate students on a Moodle 

platform, finding a recursive SRL cycle with distinct patterns for high- and low-performing students. High-

performing students adjusted and enhanced their SRL behaviors more significantly following a formative exam, 

offering insights for practitioners on fostering effective SRL through feedback. The summary of this earlier 

researches are described in table 1. 

Table 1 – Previous Research Summary 

Ref.

No 

Algorithm Methodology Advantages Disadvant

ages 

Performan

ce 

Efficie

ncy 

Accuracy Features 

Used 

Meas

ureme

nts 

[9] Ensemble Facial emotion 

detection system 

in online 

learning 

Enhances 

student 

engagement 

and learning 

outcomes 

Difficulty 

in 

optimizing 

anonymity 

features in 

collaborati

ve 

learning 

tools 

Above 

90% 

High High Facial 

emotion 

recognition 

Stude

nt 

attenti

venes

s 

[10] Ensemble the relationship 

between the 

quality of the 

educational 

system and 

overall 

satisfaction of 

users in e-

learning. 

Insights for 

enhancing 

educational 

materials 

and 

improving 

student 

satisfaction 

Challengin

g impact 

of 

informatio

n quality 

NIL High N/A Educationa

l system 

quality, 

ease of use, 

satisfaction 

Satisf

action

, 

engag

ement 

[11] Ensemble Research on 

anonymity and 

its effects on 

collaborative 

learning 

Preference 

for 

anonymity 

despite 

productivity 

concerns 

Challenge

s in 

optimizing 

anonymity 

features 

for 

productivit

y 

Highlights 

potential 

benefits 

N/A N/A Anonymity 

features 

Produ

ctivity

, 

engag

ement 

[12] Ensemble Exploration of 

resourceful 

behaviors in 

student 

entrepreneurship 

Implications 

for resource 

management 

in fostering 

innovation 

among 

student 

ventures 

Limited 

focus on 

specific 

emotionsS

tudy on 

how 

mindful 

agency 

influences 

High N/A N/A Financial 

bootstrappi

ng, 

bricolage, 

innovative 

behavior 

Innov

ation, 

resour

cefuln

ess 



J. Electrical Systems 20-3s (2024): 401-418 

405 

students' 

identificati

on with 

online 

teaching. 

[13] Ensemble Study on how 

mindful agency 

impacts students' 

identification 

with online 

teaching. 

Theoretical 

understandin

g and 

guidance for 

enhancing 

identificatio

n with online 

teaching 

Limited 

impact on 

cognitive 

load, 

motivation

, or flow 

experience 

NIL High NIL Mindful 

agency, 

online 

learning 

self-

efficacy, 

self-

disciplined 

learning 

online 

Identi

ficatio

n, 

motiv

ation, 

learni

ng 

outco

mes 

[14] Deep 

Learning 

AI-enabled tool 

for generating 

reports on 

engaging 

teaching videos 

in higher 

education 

Identificatio

n and 

enhancement 

of 

engagement 

behaviors in 

video 

conferencing 

Limited 

exploratio

n  

Improved 

precision 

and 

accuracy  

NIL NIL Deep 

learning for 

video 

analysis 

Engag

ement

, 

teachi

ng 

qualit

y 

[15] Deep 

Learning 

Factors 

influencing 

undergraduate 

students' 

adoption of AI 

chatbots for 

educational use 

Insights into 

factors 

affecting 

adoption 

intention 

Need for 

further 

investigati

on into 

dynamics 

of 

perceived 

usefulness 

and ease 

of use 

NIL NIL NIL Perceived 

benefits, 

compatibili

ty, 

trialability, 

trust 

Adopt

ion 

intenti

on, 

effecti

venes

s 

[16] Deep 

Learning 

Study on  

entrepreneurial 

actions 

Implications 

for 

entrepreneur

ship 

education 

methods in 

moderating 

relationship 

Limited 

exploratio

n  

Enhanced 

accuracy  

NIL NIL Environme

ntal 

mindset, 

entrepreneu

rship 

education 

methods 

Entre

prene

urial 

action

s, 

minds

et 

[17] Deep 

Learning 

Examination of 

learning 

strategies in a 

flipped 

classroom 

Structuring 

flipped 

classrooms 

with 

frequent, 

low-stakes 

assessments 

for enhanced 

effectiveness 

Mitigation 

of 

procrastin

ation 

through 

structured 

assessmen

t 

High 

accuracy 

NIL NIL Engagemen

t, 

assessment 

strategies 

Learn

ing 

strate

gies, 

effecti

venes

s 

[18] Deep 

Learning 

Exploration of 

MOOC data and 

its impact on 

student 

Insight into 

engagement, 

semantics, 

and 

Sentiment/

stress had 

little 

influence 

NIL NIL NIL Engagemen

t, 

semantics, 

sentiment/s

Stude

nt 

outco

mes, 
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outcomes sentiment/str

ess on 

student 

outcomes 

on 

academic 

performan

ce 

tress senti

ment 

[19] ANN Identification of 

key factors 

impacting 

undergraduate 

academic 

performance 

Controlled 

student data 

collection 

and machine 

learning for 

understandin

g study 

behaviors 

and 

achievement 

High 

correlation 

between 

class 

attendance

, sleep 

quality, 

and high 

grades 

New 

framewor

k for 

understan

ding  

NIL NIL Class 

attendance, 

sleep 

quality, 

questioning 

during 

lectures 

Acade

mic 

perfor

manc

e, 

study 

behav

iors 

[20] DL ODL-BCI, an 

optimized deep 

learning model 

designed for the 

real-time 

classification of 

students' 

confusion levels 

using EEG data. 

Achieves 

superior 

performance 

compared to 

state-of-the-

art methods, 

with an 

accuracy 

increase 

ranging from 

4% to 9%. 

Limited 

exploratio

n 

4%-9% 

higher 

NIL NIL EEG data 

for 

confusion 

levels 

Real-

time 

classif

icatio

n of 

confu

sion 

levels 

[21] Deep 

Learning 

how different 

peer assessment 

modes influence 

behaviors and 

performance in 

musical theater. 

 

 

Improved 

performance, 

critical 

feedback, 

engagement 

with peer 

scoring and 

commenting 

mode 

No 

significant 

difference

s in 

learning 

motivation

, flow 

experience

, or 

cognitive 

load 

between 

groups 

NIL NIL NIL Peer 

scoring, 

peer 

commentin

g 

Music

al 

theate

r 

perfor

manc

e, 

engag

ement 

[22] Deep 

Learning 

CM-TTG 

approach for 

ninth-grade 

students' 

learning 

achievement 

Improved 

learning 

achievement 

compared to 

conventional 

approach 

No 

significant 

difference

s in 

motivation

, flow 

experience

, or 

cognitive 

load 

between 

groups 

NIL NIL NIL Two-tier 

test-based 

gaming, 

concept 

mapping 

Learn

ing 

achie

veme

nt, 

engag

ement

, 

cognit

ive 

load 

[23] Deep 

Learning 

Study on SRL 

behaviors of 

undergraduate 

students on a 

Recursive 

SRL cycle 

observed 

with distinct 

High-

performin

g students 

adjusted 

NIL NIL NIL SRL 

behaviors 

on Moodle 

platform 

Learn

ing 

achie

veme
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Moodle platform patterns for 

high- and 

low-

performing 

students 

SRL 

behaviors 

significant

ly 

following 

a 

formative 

exam 

nt, 

SRL 

behav

iors 

III. FUNDAMENTALS 

3.1 Flipped Classroom Model: 

 The concept of a flipped classroom involves changing the traditional learning environment. In a regular 

classroom, students are taught new ideas directly by their teacher and then practice and use them as homework. 

However, in a flipped classroom, students are exposed to new material through online resources before or outside 

of class. In the classroom, they participate in interactive activities such as discussions and hands-on projects to 

apply their knowledge. Figure 1 as explained the Flipped Classroom Model as drawn. 

 

Figure 1 - Flipped Classroom Model 

The FCM consists of two main components: Pre Class Work, which is done at home, and In-Class Work. During 

the Pre Class Work, students independently prepare for the upcoming class by watching pre-recorded lectures, 

videos, or reading assigned materials. They also take notes, answer questions, and gain a basic understanding of 

the new concepts. In the classroom, students engage in active learning activities such as group work, problem 

solving exercises, discussions and hands-on activities. This allows them to reinforce and deepen their 

understanding of the material. Additionally, they have the opportunity to ask questions and apply what they 

learned at home. The Flipped Classroom Model offers several advantages including individualized pacing for 

students to speed that is comfortable for you and increased engagement due to active learning. It also promotes a 

deeper understanding of concepts through immediate application in class and allows teachers to provide 

personalized feedback and support since they have more time to interact with students. 

3.2 Recurrent Neural Networks:  

RNNs are a specialized form of ANN intended for managing consecutive data and time-based tasks. Unlike 

conventional feedforward neural networks that treat each input separately, RNNs have interconnected links that 

create a circular pattern, enabling them to demonstrate dynamic temporal patterns. This feature makes RNNs 

highly suitable for tasks involving sequential input and/or output, such as language processing, voice recognition, 

prediction of time series data, and other related tasks. Figure 2 and Table 2 are discussed about aspect of RNN.   
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Figure 2 - RNNs Structure 

RNNs can generate descriptions or captions for images based on the visual features extracted from convolutional 

neural networks. RNN Structure and Recurrent Connections: An important aspect of RNNs is their use of 

recurrent connections within the network. Table 3 explains the types of algorithm in RNNs. These connections 

form loops that allow information to persist, capturing relationships between time steps.  

Table 2 - Aspects of RNN 

Aspect Description 

Time Unfolding Unfolding the RNN over time steps helps understand its processing of 

sequences. Each time step corresponds to an input element, allowing 

visualization of how the network handles sequential data. 

Hidden State The RNN retains a hidden state \(h_t\) at every time step \(t\). This hidden 

state encodes information from earlier inputs, serving as the network's 

memory. It summarizes the data seen up to that point and helps in making 

predictions for the next step in the sequence. 

RNN Training: 

Backpropagation Through Time 

(BPTT) 

Training RNNs involves Back propagation Through Time (BPTT), an 

extension of back propagation used in feed forward neural networks. BPTT 

calculates gradients of the loss function for each time step. These gradients 

are then used to update the network's weight, allowing it to learn from 

consecutive data. 

RNN Training: 

Exploding Gradient Problem and 

Vanishing 

RNNs may encounter challenges such as the vanishing gradient problem, 

where gradients diminish significantly as they propagate through time, or the 

exploding gradient problem, where gradients become excessively large. To 

address these issues, strategies like gradient clipping, utilization of various 

activation functions, and the adoption of specialized architectures such as 

LSTM or GRU are employed. 

Table 3 - Types of RNNs 

Types Description 

Vanilla RNN The fundamental structure of an RNN is similar to what was previously explained. It 

includes connections that enable data to pass through different time points. However, 

its effectiveness in capturing distant relationships is hindered by the issue of 

vanishing gradients. 

Long Short-Term 

Memory  

An advanced type of RNN has been devised to address the limitations of basic RNNs, 

particularly in capturing long-term dependencies. LSTMs feature a more intricate 

architecture, incorporating elements such as input, forget, and output gates. These 
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gates control the movement of data within the cell, enabling it to retain and recall 

information over long sequences. The memory cell in LSTMs is responsible for 

storing important data, avoiding the issue of vanishing gradients. 

Gated Recurrent Unit 

(GRU) 

GRUs were created with the intention of improving upon the limitations of basic 

RNNs, much like LSTMs. They were specifically designed to tackle the issue of 

vanishing gradients and are more efficient in terms of computation compared to 

LSTMs. Additionally, GRUs include gates such as update and reset gates which 

allow them to better capture connections between time steps and retain information 

over longer sequences while also having a smaller number of parameters. As a result, 

they are easier to train and more efficient overall. 

3.3 Sequence Modeling:  

Sequence modeling is the process of forecasting the next element in a sequence of data points. It plays a crucial 

role in various fields, such as natural language processing, speech recognition, time series analysis, 

genomics, and others. The primary goal is to develop a model that can identify patterns and connections among 

the data sequence and use that knowledge to make accurate predictions follow up with Figure 3. 

 

Figure 3 – Sequence Diagram 

3.4 LSTM Networks:  

LSTM networks, a form of RNN design, were developed to overcome the limitations of conventional RNNs in 

preserving and understanding long-term relationships in sequential information. As shown in Figure 4, these 

networks have proven to be very effective in tasks like predicting time series, processing natural language, 

recognizing speech, and others that involve capturing distant connections. 

 

Figure 4 - LSTM Architecture 

IV. PROPOSED SLBPR-RNN MODEL 

4.1 Students Activities Findings 

The analysis revealed two distinct groups of student behaviors. The first, called the "Prepared" cluster, consisted 

of 58% of the students. These students consistently utilized pre-eclampsia materials before both classes and 
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assessments throughout the course. The second group, referred to as the "Assessment-focused" cluster, made up 

42% of the students. They tended to access online resources after class sessions but before weekly assessments. 

Within the Prepared cluster, there was a consistent trend of accessing materials before class, although there was a 

noticeable difference between different sections of the course. In section 1, students accessed flipped resources 19 

hours before class while in another section this occurred just 1 hour before. This difference in timing may be 

attributed to assessment schedules and the nature of online materials used. For example, when presented with 

video-based materials and small-scale weekly assessments, students prepared well in advance by gaining an initial 

understanding beforehand, applying it during class activities, and then revising any unclear points using online 

resources before assessments. However, their approach changed in a different section where they prioritized 

accessing written materials right before class to have them available during in-class activities instead of engaging 

with text-based content beforehand. 

On the other hand, the Assessment-focused cluster typically accessed resources after relevant classes but before 

assessments for both sections of the flipped course. Notably, when the course structure shifted from weekly low-

stakes assessments based on video materials to a higher-stakes assessment based on three weeks of written 

material, this group tended to procrastinate more before accessing online resources. This highlights how important 

course structure is in a flipped classroom setting, particularly in terms of assessment timing and weighting. Unlike 

the Prepared cluster, the Assessment-focused group did not prioritize engaging with and understanding online 

materials before class as preparation for assessments. These findings demonstrate how learning strategies can 

adapt to changes in course structure. 

After identifying two learning strategies, the researchers analyzed their respective performances. The flipped class 

was divided into two sections, each worth 30% of the total grade. The study did not include the 40% group 

project. Students in the Prepared group had higher scores in both section 1 (22.1% versus 18.3%) and section 2 

(13.7% versus 12.8%) compared to those in the Assessment-focused group. However, this difference was only 

statistically significant for section 1. This suggests that students who followed the intended structure of the flipped 

classroom performed better on assessments compared to those who prioritized assessments over class activities. 

Student activity was assessed by their frequency of accessing the class website and number of activities completed 

in each section. The differences in activity between the two groups were statistically significant for the entire 

semester, with the Prepared group having more sessions and total events than the Assessment-focused group. 

Although the Prepared group had a slightly lower number of events per session, it can be inferred that they 

accessed the virtual learning environment (VLE) for specific purposes each time. 

When looking at activities specific to each section, it was observed that students in the Prepared group 

consistently accessed the VLE more frequently than those in the Assessment-focused group for both sections 1 

and 2, with significantly higher numbers of sessions and events. Additionally, when examining average weekly 

sessions for each group over a 12-week semester, it was found that the Prepared group remained consistently more 

active throughout. Interestingly, even during week 8 when there was no class due to individual group meetings for 

the project, the Prepared group remained active on the VLE. On the other hand, activity levels for the Assessment-

focused group declined during weeks 9 to 11 and increased again during the final week when assessments were 

approaching. This implies that this group engaged more with online materials as exams drew closer. 

4.2 Improved Pattern Recognition Process 

We present a method for categorizing student actions in the classroom through facial expressions, with the goal of 

determining their level of comprehension. Our approach involves training our model (Model α) on facial 

expressions from a large dataset (Dataset 1) and then fine-tuning it for use in classifying student behavior (Model 

β) using a smaller dataset (Dataset 2). We outline our proposed SLBPR-RNN approach, which consists of three 

main steps: (i) detecting and tracking faces, (ii) recognizing facial expressions, and (iii) classifying student 

behavior. Each step is explained further in the following sections. To detect faces in a video or image, we use the 

Haar Cascade algorithm developed by Viola and Jones, known for its accuracy in identifying one or more faces. 

In our implementation, we apply this algorithm to the first frame of a video using OpenCV, and then use the dlib 

library to track faces in subsequent frames. Once faces are detected and tracked, we extract them from each frame 

and resize them to 48 × 48 pixels while converting them to grayscale. Figure 5 provides an overview of our 

approach for classifying student behavior. 
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Figure 5 - An Overview of student’s behavior classification approach. 

For feature extraction, we adopt a per-trained model, VGG-16. Our team has made modifications to the VGG-16 

architecture in order to improve its accuracy in classification tasks. This revised model includes 8 convolutional 

layers, 4 max-pooling layers, 1 flatten layer, 1 dropout layer, and 2 fully connected dense layers. To enhance the 

accuracy even further, we have incorporated the ELU activation function in all layers and utilized SAME padding 

in each convolutional layer to preserve the input size. 

The specific structure of our modified VGG-16 model can be described as follows: 

⚫ The first and second convolutional layers (Conv1-1 and Conv1-2) consist of 32 feature kernel filters with a 

filter size of 3×3. This results in an output size of 48x48x32, which is then passed through a max-pooling layer 

with a stride of 2. 

⚫ The third and fourth convolutional layers (Conv2-1 and Conv2-2) utilize 64 feature kernel filters with a filter 

size of 3×3. A subsequent max-pooling layer with a stride of 2 reduces the output to 24x24x64. 

⚫ For the fifth and sixth convolutional layers (Conv3-1 and Conv3-2), we have employed 128 feature maps 

with a filter size of 3×3, resulting in an output size of 12x12x128. These are followed by another max-pooling 

layer with a stride of 2. 

⚫ The seventh and eighth convolutional layers (Conv4-1 and Conv4-2) consist of 256 kernel filters with a filter 

size of 3×3, followed by a max-pooling layer with a stride of 2. 

⚫ The flatten layer transforms the data into a one-dimensional array with a size of 2304. 

⚫ To prevent overfitting, we have incorporated a dropout layer with a rate of 0.2. 

⚫ The final layers consist of two fully connected hidden layers (Dense 1 and Dense2) each with 2304 units, 

followed by a soft max output layer. 

 

In order to maximize the use of existing datasets and address the challenge of limited labeled data, we have also 

implemented deep transfer learning techniques. This involves utilizing pre-trained models, such as VGG-16 

trained on Image Net, and transferring the learned weights to new tasks. In our case, we have used the pre-trained 

VGG-16 model as an efficient feature extractor for classifying student behavior in the classroom, even with a 

limited amount of video data from a separate dataset. We have transferred the learned weights from the facial 
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expression recognition task on the first dataset to classify student behavior. The architecture of our modified 

VGG-16 model is illustrated in Figure 6. 

 

Figure 6 - Architecture of Modified VGG-16 Model. 

Furthermore, we fine-tune the model for student behavior classification using data augmentation techniques to 

enhance accuracy and mitigate over fitting. This technique involves introducing small variations to the data-set, 

such as rotation, saturation, Gaussian blur, horizontal stretch, and desperation, without altering the central object. 

By augmenting the data-set, we increase the diversity of training examples, thus improving the robustness and 

generalization of the model. 

V. PERFORMANCE ANALYSIS: 

Simulation demonstration of the proposed SLBPR-RNN is performed in python with the presence of the SCB 

Student learning Behavior dataset [24]. The performance of the presented models is elaborated in this section in a 

detailed manner. 

5.1 SCB Student learning Behavior dataset: These datasets are made up of a range of data gathered from 

students' engagements with educational platforms, systems, or materials. These collections of information may 

encompass User actions, Evaluation data, Demographic details and Usage trends. They are frequently utilized in 

educational studies, the creation of personalized learning systems, learning analytics, and other associated aims. In 

figure 7, some of the details about the SCB dataset are given which includes class differences, different learning 

stages and varying shooting angles. 
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Figure 7 - SCB-Dataset 

5.2 SCB-Dataset annotation distribution: In datasets, annotations are generally used to indicate labels, tags, or 

extra details given to the data elements. The annotation distribution shows how these labels are spread out within 

the dataset. For instance, in a dataset of images labeled for identifying objects, the annotation distribution would 

reveal the number of instances labeled as "reading," "using phones," "hand raises," and "writing," as well as their 

distribution throughout the dataset. In figure 8, the SCB dataset annotation is described. 

 

Figure 8 - SCB Dataset Annotation 

5.3 Proposed SLBPR-RNN Training and Testing Accuracy: When using RNN for recognizing student learning 

behavior patterns in a flipped classroom, the terms "training accuracy" and "testing accuracy" refer to measures 

used for evaluating model's presentation during testing and training stages. Figure 9 illustrates the training and 

testing accuracy of the Proposed SLBPR-RNN model in the context of the SCB dataset. 

 

Figure 9 - SLBPR-RNN Training and Testing Accuracy 
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Training accuracy assesses how accurately the model predicts outcomes on the training data during the training 

stage. In the context of RNNs for recognizing student learning behavior patterns, training accuracy reflects how 

well the model adapts to our SCB dataset. It is determined by the percentage of correctly classified instances (or 

sequences) in the training SCB dataset. On the other hand, testing accuracy evaluates the model's predictions on 

new and unseen SCB data, also known as the testing SCB dataset. In RNNs for recognizing student learning 

behavior patterns, testing accuracy demonstrates how well the model can generalize to new and unseen SCB data. 

It is calculated in a similar manner to training accuracy but using a separate SCB dataset that was not used during 

training. 

5.4 Comparative Analysis: The metrics which are used in the comparative analysis are Accuracy (%), Precision 

(%), Recall (%) and mAP@50%. The earlier baseline methods which are used for this comparative analysis are E-

ELAN [25], YOLOv5 [26] and YOLOv7 [27] and as well it gets compared with the proposed SLBPR-RNN. 

Table 4 shows about the comparison of the presented methods with the considered metrics. 

Table 4 – Comparative Performance 

 Methods Class Accuracy (%) Precision (%) Recall (%) mAP@50% 

E-ELAN 

Reading 90.4 87.6 75.3 88.3 

Writing 81.1 84.2 83.3 89.1 

Hand raising 83.2 80.9 80.7 82.2 

Using phone 88.3 88.5 76.8 89.9 

YOLOv5 

Reading 93.6 87.6 75.3 78.3 

Writing 94.6 84.1 77.8 83.7 

Hand raising 85.8 79.4 86.9 92.6 

Using phone 88.1 81.2 72.4 89.4 

YOLOv7 

Reading 92.6 91.4 80.5 93.7 

Writing 90.1 92.9 83.2 94.9 

Hand raising 89.8 89 92.6 91.1 

Using phone 88.5 91.1 84.6 90.5 

SLBPR-RNN 

Reading 97.6 97.6 85.9 98.3 

Writing 94.1 94.1 82.1 99.1 

Hand raising 95.8 95.8 91.3 97.6 

Using phone 98.5 98.5 94.5 99.4 

5.4.1 Accuracy Calculation: When using RNN for sequence modeling, the accuracy is determined by assessing 

the RNN's ability to accurately predict student learning behaviors in comparison to the correct labels. This is 

calculated by determining the percentage of correctly predicted behavior patterns out of all sequences in the 

dataset. It is typically represented as a percentage and can be mathematically calculated using formula (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
× 100%    (1) 

The precision of RNNs in sequence modeling for detecting patterns in student learning behavior evaluates the 

model's accuracy in predicting behavior patterns, when compared to the actual labels. This metric offers a 

numerical indication of how well the model can identify and forecast significant patterns in student learning 

behaviors within a flipped classroom setting. In figure 10 illustrates the accuracy calculation of the methods like 

E-ELAN, YOLOv5, YOLOv7 and proposed SLBPR-RNN. The results show that the proposed SLBPR-RNN 

achieved maximum accuracy when compared with the earlier baseline methods. 
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Figure 10 – Accuracy Calculation 

5.4.2 Precision Calculation: When utilizing RNN for sequence modeling, the precision calculation is essential in 

determining the model's capacity to accurately predict positive outcomes. This measure is particularly valuable in 

evaluating the model's skill in recognizing distinct patterns of learning behavior among students through their 

interactions with educational materials. The formula (2) outlines the mathematical procedure for calculating 

precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
    (2) 

In the equation (2), the term TP refers to the sequences that the model accurately recognizes as being part of a 

specific behavior pattern, such as active engagement. On the other hand, FP refers to the sequences that are 

mistakenly identified by the model as being part of the behavior pattern when they are not. Precision is a measure 

that determines the accuracy of correctly identifying positive cases (true positives) in relation to all the cases the 

model identified as positive. It reflects the level of certainty we have that the instances classified as a specific 

behavior pattern by the model are correct. In recognizing student learning behavior patterns, precision assists in 

evaluating how effectively the model detects particular behaviors (e.g., active engagement) within a sequence of 

student interactions. A higher precision suggests that the model is making fewer incorrect predictions, which is 

advantageous when our goal is to accurately capture behavior patterns. In figure 11, the precision of the methods 

like E-ELAN, YOLOv5, YOLOv7 and proposed SLBPR-RNN are discussed and it proves the superiority of the 

proposed work. 

 

Figure 11 – Precision Calculation 
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5.4.3 Recall Calculation: When utilizing RNN for sequence modeling, it is crucial to calculate recall in order to 

evaluate the model's proficiency in accurately identifying all occurrences of a specific student learning behavior 

pattern within the student interactions with educational materials in a flipped learning setting. This calculation can 

be represented mathematically through equation (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
    (3) 

In equation (3), the term True positive (TP) refers to the sequences that the model accurately recognizes as part of 

a particular behavior pattern, such as active engagement. False negative (FN) denotes the sequences that are 

mistakenly labeled by the model as not being part of the behavior pattern, although they truly are. Reminder is a 

metric that indicates the proportion of correctly identified positive cases among all actual positive cases. It 

illustrates the model's capability to detect all occurrences of a specific pattern of student learning behavior within 

a sequence of student interactions. In recognizing patterns of student learning behavior, reminder aids in 

comprehending how well the model recognizes and captures all occurrences of specific behaviors (e.g., active 

engagement) within student interactions. A higher reminder indicates that the model is effectively capturing a 

larger proportion of actual instances of the behavior pattern, which is important when we want to avoid missing 

any relevant instances. In figure 12 the performance of the Recall is shown for the methods such as E-ELAN, 

YOLOv5, YOLOv7 and proposed SLBPR-RNN were the effectiveness of the proposed work is proved.  

 

Figure 12 – Recall Calculation 

5.4.4 mAP@50% Calculation: RNN sequence modeling utilizes the @50% calculation, also known as mean 

Average Precision at 50%, to assess how well the model can detect significant patterns in student learning 

behavior from their interactions with educational materials. The determination of Average Precision (AP) involves 

computing the area under the precision-recall curve (AP) for each behavior pattern. Mean Average Precision 

(mAP) is obtained by averaging the AP scores for all behavior patterns. When considering mAP@50%, only the 

precision values at a recall level of 50% are taken into account. This allows for evaluating precision at a specific 

recall level, in this case, 50%. The mAP@50% metric is valuable when there is a need for a fair balance between 

recall and precision. It serves as a calculate of effectiveness of the SLBPR-RNN model in detecting relevant 

patterns in student learning behavior, while also maintaining a 50% recall level. This metric is especially useful in 

applications where both precision and recall play crucial roles, such as studying student learning behavior in a FC 

environment. In figure 13, the performance of the presented methods like E-ELAN, YOLOv5, YOLOv7 and 

proposed SLBPR-RNN are calculated in terms of mAP@50% and the superiority of the proposed work is 

understood. 
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Figure 13 - mAP@50% Calculation 

VI. CONCLUSION 

Using RNN-based sequence modeling allows for the recognition and comprehension of unique patterns in 

learning behavior, opening up possibilities for personalized learning experiences. By tailoring educational 

materials to match individual preferences, pace, and comprehension styles, students can engage with content in a 

way that best suits them. The system also facilitates early detection of learning difficulties and gaps in 

understanding, providing educators with valuable insights to address potential issues before they worsen. This 

proactive approach supports a more effective and targeted intervention strategy. In a flipped classroom setting, 

where students access instructional material outside of regular class time, incorporating RNNs enhances the 

efficacy of both pre class activetie and in class activitie by adapting them to each student's learning patterns. This 

collaboration strengthens the flipped classroom model as a whole. The integration of RNNs in recognizing 

learning behavior presents opportunities for further research and innovation in education. This technology-driven 

approach highlights the potential of artificial intelligence to revolutionize the future of education. 
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