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Abstract: - Recently, there has been a notable increase in interest surrounding the utilization of Deep Learning Approaches for AMCS in 

recent times. However, current methods often lack coherence and authenticity in the generated music. This study proposes a new 

approach that utilizes RNNs to bridge the gap between traditional compositional methods and modern deep learning techniques. The goal 

is to produce expressive and coherent musical pieces. Our methodology involves designing and implementing a customized RNN 

architecture that can effectively capture the complex temporal dependencies present in musical sequences. We experiment with different 

types of including LSTM networks, RNNs, and GRUs, to overcome challenges such as vanishing gradients and better model longer-term 

dependencies in music. To train the neural network efficiently and improve model convergence, various deep learning optimizers are 

utilized in our system. Specifically, we use SGD optimizer to improve the hyper parameters of LSTM and GRUs. The data for training is 

converted into MIDI format and analyzed, with music lines being identified through a similarity matrix technique. The MIDI data is then 

prepared for use in the LSTM and GRUs networks. The resulting music is assessed using both objective measures, such as mean squared 

error, and subjective approaches. This research adds to the advancements in automatic music composition by demonstrating the capability 

of RNNs in capturing and producing complex musical arrangements. 

Keywords: Deep Learning Approach, Automatic Music Composition Systems (AMCS), Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRUs) and Stochastic Gradient Descent 

(SGD) optimizer 

I. INTRODUCTION: 

Music serves as a significant means for individuals to express their emotions and sentiments. It has been 

established as a set of principles for composing music. These principles serve as guidelines for creating music and 

regulate the standards for its composition. Generally, A full musical composition consists of three key elements: 

pitch sequence, music style and rhythm. The style of music often reveals itself through the employed chord 

progressions, while rhythm is defined by the repeating beats found in various sections. Central to the composition 

is the pitch sequence, which carries significant weight in shaping the overall piece. A musical composition can be 

divided into two parts: melody and accompaniment. The melody is responsible for conveying the main impression 

to the audience, while the accompaniment enhances harmony and adds flavor to the music [1]. Composing 

satisfactory music is a complex and challenging task as all these components and their interactions need to be 

taken into account. In recent years, there have been attempts to use artificial intelligence technology to analyze and 

create music, particularly in automatic accompaniment systems. While this approach has shown promising results, 

composing melodies still poses a major challenge due to the vast number of possible combinations of notes and 

beats. 

In the realm of skilled musicianship, absorption encompasses a variety of experiences that may occur during 

practice or performance. Various experiences can span from the mundane and uninteresting, akin to a routine day 

at work, to moments where the mind wanders, and even to intense occurrences that transiently shift fundamental 

aspects of consciousness, such as perceptions of time, space, and self [2]. Recent dialogues on absorption in 

musical pursuits (such as composing, performing, or listening) have emerged from the realms of cognitive 

psychology and music psychology, often taking an ethnographic viewpoint. These accounts suggest that absorbed 

listening involves both a wealth of sensory input and heightened focus on the task at hand, while also allowing for 

the opposite states such as mental wandering, disengagement from the activity, and dissociation. 

Recognizing musical instruments is a recognized and established task in MIR. Its objective is to discern the 

specific instrument being played in a given recording. This task holds relevance for a range of other applications, 

including source separation, automatic music transcription, developing music recommendation systems, and 

assessing music similarity. Moreover, it can prove advantageous for endeavors such as identifying a song's mood 
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or genre. [3]. The task of instrument recognition presents two primary challenges: distinguishing instruments in 

recordings featuring a single instrument and identifying the predominant instrument within an ensemble recording. 

Analyzing recordings with just one instrument is generally regarded as straightforward, with many researchers 

achieving high accuracy levels (around 90%, akin to humans' ability to classify instruments based on a single 

sound). The latter challenge is more intricate as it necessitates discerning the dominant sound source within an 

ensemble recording, a concept that lacks a precise definition. 

Sheet music plays a crucial role in the lives of not only students, but all artists. It helps to broaden their skills and 

allows them to reach their full potential. Additionally, sheet music serves as a means of communication between 

different musicians. It provides a structured way for musicians to share their compositions with each other, 

exchange ideas, and come to agreements [4]. While it allows for the sharing of one's own compositions, it also 

enables access to others' works with their permission. Although there may be other options available, sheet music 

remains the preferred medium for musical composition in the industry. 

The process of creating music has traditionally relied on a composer's expertise in combining musical knowledge, 

emotion, and creativity. With advancements in computer technology, various music-related tools have been 

developed, mainly focused on editing techniques like arrangement and mixing. These programs allow for the 

separation and recombination of different parts of a piece, using the composer's specialized understanding of 

musical composition. As technology continues to evolve, experiments in musical intelligence (EMI) have utilized 

algorithms to analyze existing music and generate new pieces with altered styles [5]. However, this method 

requires a significant amount of time. There have also been attempts to incorporate mathematical models into 

music composition, such as the Illiac Suite created by the ILLIAC I computer using the Markov algorithm. With 

the impressive progress made in artificial intelligence across various fields, a trend has emerged towards 

employing neural networks to generate music of higher quality. Systems based on recurrent neural networks, such 

as Magenta, DeepJazz, BachBot, FlowMachines, and WaveNet, are being developed to assist composers in swiftly 

producing music [6]. However, most of these methods rely on note-based composition which can be limiting as 

melodies often change within bars. As a result, some systems are now utilizing bars a basic unit of composition. 

Recently, deep learning has been used to produce music by taking into account specific musical characteristics. 

For instance, the CONCERT program utilizes RNN to create melodies, while Deep Bach utilizes a LSTM neural 

network to compose both melodies and harmonies, which has proven to be more accurate in identifying melodic 

structures compared to RNN. The Song from the PI model also employs a multi-layer LSTM to simultaneously 

compose melodies, harmonies, and percussion [7]. Additionally, GAN, known for its success in image processing, 

has been applied in various studies for GAN-based music composition. One example is the use of C-RNN-GAN, 

where two LSTMs are used to build a GAN model for composing melodies. However, due to its reliance on note-

based composition, the quality of the generated music is often lacking. To address this issue, our study proposes an 

improved GAN model for composing melodies. By introducing a GAN model that is suitable for bar-based 

encoding, we were able to overcome the limitations faced by C-RNN-GAN when working with note-based 

compositions. Furthermore, by using the TFIDF algorithm and implementing a filter based on shallow structural 

descriptions from our previous research [8], we were able to successfully differentiate between high-frequency 

melodic components and non-melodic elements in music and extract relevant data for training purposes. The main 

contribution of this research is discussed below. 

1.1 Research Contribution: 

• RNNs make it possible to generate music that goes beyond simply copying existing pieces. They have the 

capability to produce unique and inventive musical works, introducing fresh patterns, arrangements, and 

melodies that may not have been previously explored in traditional composition.  

• With the use of RNN technology, AMCS offer a more efficient and time-saving method for creating music. 

These systems can quickly generate a wide variety of musical pieces, providing composers and musicians with 

a plethora of material to incorporate into their own work.  

• By training on a diverse range of musical styles, RNN-based systems allow artists to explore different genres 

and experiment with blending influences from multiple genres. 

• An effective AMCS system is developed using LSTM model which can able to achieve maximum accuracy 

and lower loss factors when compared with the earlier baseline methods. 
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II. RELATED WORKS: 

In [9], an algorithm combines audio and video features using multimodal deep learning, outperforming single 

modal classifiers in music emotion classification. Through a diverse music video dataset, experiments demonstrate 

its superior classification efficiency over traditional methods. In [10], an automated pipeline was described for 

conducting large-scale cultural transmission experiments using singing. This revealed the evolution of 3,424 

melodies across 1,797 participants in the US and India, demonstrating how individual biases and social dynamics 

influence the emergence of musical structures observed across different cultures. In [11], a meta-analysis of 62 

longitudinal studies was conducted, indicating that music training yields slight yet consistent positive effects on 

both behavioral and brain measures related to auditory and linguistic processing. These effects were found to 

persist regardless of the type of training or control group used, underscoring the potential benefits of music 

education for neuro behavioral enhancements. In [12], the study reveals that nasal breathing enhances feelings of 

relaxation and happiness while listening to music, compared to oral breathing, which shows a tendency towards 

more negative emotions. Musical features like consonance positively correlate with positive emotions, while song 

complexity correlates with negative emotions, shedding light on the influence of breathing pathways on emotional 

processing during music listening. In [13], a system has been developed to precisely identify chord shapes from 

extremely brief music clips, achieving an impressive accuracy of 99.47%. This was accomplished through the 

utilization of LSF-deltaS deltaG features and a classification model based on LSTM-RNN. This advancement aids 

in musical composition analysis, transcription, and automated background music generation. In [14], a system 

leveraging Deep Learning, employing multi-layered GRU cells for source separation and LSTM cells for chord 

estimation, resulting in enhanced accuracy of sheet music generation from songs. This advancement expands the 

system's capacity to separate multiple sources and improves the precision of chord estimation for musicians and 

enthusiasts alike. 

In [15], a sensor network-driven audio retrieval and vocal music teaching system has been developed, improving 

accuracy and efficiency through the optimization of sensor placement and algorithms. This system offers real-time 

monitoring, thorough sound evaluation, and guidance, showcasing its effectiveness in both audio retrieval and 

vocal music instruction. In [16], convolutional neural network approach for musical instrument recognition, 

addressing both single instrument classification and more challenging polyphonic recordings. Staged training, 

building on monotimbral analysis, enhances accuracy, offering promise for improved instrument recognition in 

music information retrieval tasks. In [17], unique resting-state functional connectivity patterns among three 

groups: Improvising musicians, Classical musicians, and MMT controls. Notably, Improvisational musicians 

exhibit heightened connectivity between the DMN and ECN. This suggests varying cortical network organizations 

among musicians, delineated by their training backgrounds and improvisation abilities. In [18], the article has been 

retracted due to a violation of peer review standards, as it was partly accepted based on a positive review from an 

illegitimate reviewer with a false identity. Apologies are extended to the affected reviewer and readers for this 

deception in the submission process. In [19], concept of "mind surfing" to reconcile the paradox of musical 

absorption involving both focused attention and mind wandering, proposing that skilled musicians can 

simultaneously experience intense focus and free exploration while "surfing" on a "musical wave".  

In [20], the integration of blockchain technology with the IoMusT has been referred to as "Blockchain-based 

IoMusT", highlighting its potential for decentralized, transparent, and efficient management of copyrights, 

royalties, and musical data in this emerging domain. In [21], the PIEC system considers music theory and imitates 

characteristics of human-composed music, resulting in compositions that exhibit melodic progression akin to 

human-made music, demonstrating effectiveness in generating satisfactory and human-like musical compositions. 

In [22], a music piece is described using the "trajectory of fifths," which improves music data mining techniques 

by examining the variability of the music signature over time. The trajectory of fifths is beneficial for assessing 

music tonality and genre classification, as validated by experiments demonstrating its applicability through 

statistical analysis. In [23], an extension has been made to a melody generation method, now encompassing the 

creation of rhythmic content derived from a coherence structure extracted from a template piece. This extension 

specifically targets bertso melodies. The method uses pattern discovery and ranking to create rhythmic coherence 

structures, resulting in coherent and perceptually pleasing bertso melodies as evaluated through listener perception 

and comparison with bertso features. In [24], deep music recommendation algorithm has been developed, which 

relies on dance motion analysis to achieve an accuracy of 91.3% in recommending music genres. This was 
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accomplished using LSTM-AE models, surpassing traditional methods and showcasing the potential of motion-

based music recommendation systems.  

 

In [25], leveraging the strengths of deep neural networks for automatic feature extraction, the system incorporates 

historical music interaction data of users, demonstrating feasibility and effectiveness through experiments. This 

neural network-based music recommendation system is tailored specifically for college students, enriching music 

education by modeling individual preferences and delivering dynamic, personalized recommendations. In [26], a 

heuristic approach employing genetic algorithms and Markov chain models is introduced for the automatic 

composition of ICM. This method addresses the distinct constraints of raga-based music, employing a greedy 

strategy to strike a balance between exploration and exploitation. The technique incorporates domain-specific 

genetic operators and an evaluation function grounded in music theory, resulting in the efficient generation of 

melodic sequences while maintaining the desired distribution of musical notes. In [27], an approach converts 

training data to MIDI format, extracts melody lines, and generates music evaluated by objective metrics and 

professional surveys, showing advantages in capturing tone, rhythm, and artistic attributes. The earlier research 

ideas are summarized in table 1. 

Table 1 – Earlier Research Summary 

Ref.No Algorithm Methodolog

y 

Advantages Disadvan

tages 

Performa

nce 

Efficie

ncy 

Accurac

y 

Featur

es 

Used 

Measure

ments 

[9] Multimod

al deep 

learning 

Combines 

video and 

audio 

features 

using MDL 

for music 

emotion 

classificatio

n 

Enhanced 

classificatio

n 

efficiency, 

comprehens

ive features 

from audio 

and video. 

Lack of 

explorati

on on 

other 

modalitie

s, training 

complexit

y. 

Outperfo

rms 

single 

modal 

classifier

s. 

High High Audio 

and 

video 

feature

s 

Classific

ation 

efficienc

y 

[10] Music 

evolution 

experimen

ts 

Large-scale 

cultural 

transmissio

n 

experiments 

using 

singing to 

examine 

melody 

evolution. 

Reveals 

individual 

biases and 

social 

dynamics' 

influence 

on musical 

structures. 

Limited 

scope, 

potential 

biases in 

data 

collection

. 

Shows 

influence

s of 

biases 

and 

social 

dynamics 

on music 

evolution

. 

High N/A Melodi

es 

from 

partici

pants 

Musical 

structure 

analysis 

[11] Music 

training 

effects 

To explore 

the impact 

of music 

training on 

auditory 

and 

linguistic 

processing. 

Shows 

slight yet 

consistent 

positive 

effects on 

behavioral 

and brain 

measures. 

Mixed 

results 

from 

individua

l studies, 

correlatio

nal 

evidence. 

Highlight

s 

potential 

benefits 

of music 

education 

on 

neurobeh

avioral 

enhance

ments. 

N/A N/A Music 

trainin

g 

progra

ms 

Behavior

al and 

brain 

measure

s 

[12] Nasal 

breathing 

Study on 

the effects 

Nasal 

breathing 

Limited 

focus on 

Demonst

rates 

N/A N/A Nasal 

vs. oral 

Emotion

s during 
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effects on 

music 

of nasal 

breathing 

on emotions 

during 

music 

listening. 

enhances 

relaxation 

and 

happiness 

compared 

to oral 

breathing. 

specific 

emotions, 

potential 

biases in 

study 

design. 

influence 

of 

breathing 

pathways 

on 

emotiona

l 

processin

g during 

music 

listening. 

breathi

ng 

music 

listening 

[13] Chord 

shape 

identificat

ion 

System for 

accurately 

identifying 

chord 

shapes from 

short music 

clips using 

deep 

learning 

classificatio

n. 

Achieves 

high 

accuracy 

(99.47%) 

using LSF-

deltaS 

deltaG 

features and 

LSTM-

RNN. 

Limited 

to short 

music 

clips, 

potential 

challenge

s with 

complex 

chords. 

Aids in 

music 

composit

ion 

analysis, 

transcript

ion, and 

automate

d 

backgrou

nd music 

generatio

n. 

High 99.47% LSF-

deltaS 

deltaG 

feature

s, 

LSTM

-RNN 

Chord 

shape 

identific

ation 

[14] Sheet 

Music 

Generatio

n using 

Deep 

Learning 

GRU cells, 

LSTM cells 

Enhances 

accuracy in 

sheet music 

generation 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Improved 

precision 

and 

accuracy 

in sheet 

music 

NIL NIL GRU 

cells, 

LSTM 

cells 

Sheet 

music 

generati

on 

[15] Sensor 

Network-

based 

Audio 

Retrieval 

Sensor 

placement 

optimizatio

n, Real-time 

monitoring 

Enhances 

accuracy 

and 

efficiency 

in audio 

retrieval 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Effective 

real-time 

monitori

ng and 

sound 

evaluatio

n 

NIL NIL Sensor 

data, 

Audio 

feature

s 

Audio 

retrieval, 

Sound 

evaluatio

n 

[16] Convoluti

onal 

Neural 

Network 

for 

Instrumen

t 

Recogniti

on 

CNN, 

Single and 

polyphonic 

recordings 

Addresses 

single and 

polyphonic 

instrument 

recognition 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Enhance

d 

accuracy 

in 

instrume

nt 

recogniti

on 

NIL NIL CNN, 

Polyph

onic 

recordi

ngs 

Instrume

nt 

recogniti

on 

[17] Resting-

State 

Functional 

Functional 

connectivity 

analysis, 

Reveals 

cortical 

network 

Limited 

explorati

on in 

Heighten

ed 

connectiv

NIL NIL Functi

onal 

connec

Cortical 

network 

analysis 
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Connectiv

ity in 

Musicians 

DMN and 

ECN 

differences 

among 

musicians 

music 

recomme

ndation 

from 

dance 

motions 

ity in 

musician

s based 

on 

training  

tivity, 

DMN 

and 

ECN 

[18] Retraction 

of 

Illegitimat

e Peer-

Reviewed 

Article 

Retraction 

of an article 

due to 

violation of 

peer review 

standards 

Retraction 

of an article 

due to 

violation of 

peer review 

standards 

Data 

transmiss

ion 

accuracy 

is 

moderate 

Ethical 

transpare

ncy and 

correctio

n 

Inappr

opriat

e peer 

review 

Retractio

n notice 

Peer 

review 

ethics 

 

Retractio

n notice 

[19] Concept 

of "Mind 

Surfing" 

in Music 

Absorptio

n 

Phenomeno

logical 

research, 

Cognitive 

psychology 

Proposes a 

new 

concept to 

reconcile 

music 

absorption 

paradox 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

New 

framewor

k for 

understan

ding 

music 

absorptio

n 

NIL NIL Attenti

on, 

Mind 

wander

ing 

Music 

absorpti

on 

[20] Integratio

n of 

Blockchai

n with 

IoMusT 

Blockchain 

technology, 

Music 

managemen

t 

Enhances 

managemen

t of musical 

data and 

copyrights 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Decentral

ized, 

transpare

nt 

managem

ent of 

music 

data 

NIL NIL Blockc

hain, 

IoMus

T 

Music 

data 

manage

ment 

[21] Phrase 

Imitation-

based 

Evolution

ary 

Compositi

on 

Genetic 

algorithm, 

Phrase 

imitation 

Generates 

coherent 

and 

melodic 

compositio

ns 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Effective 

generatio

n of 

music 

with 

melodic 

progressi

on 

NIL NIL Geneti

c 

algorit

hm, 

Phrase 

imitati

on 

Composi

tion 

generati

on 

[22] MDM for 

Trajectory 

of Fifths  

Trajectory 

analysis, 

signature of 

Music  

Enhances 

music data 

mining with 

trajectory 

representati

on 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Valuable 

insights 

into 

music 

tonality 

and 

genre 

NIL NIL Traject

ory 

analysi

s, 

Music 

signatu

re 

Music 

data 

mining 
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[23] Automatic 

Compositi

on of 

Indian 

Classical 

Music 

Genetic 

algorithm, 

Markov 

chain 

Addresses 

constraints 

of raga-

based 

music in 

compositio

n 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Efficient 

generatio

n of 

Indian 

Classical 

Music 

NIL NIL Geneti

c 

algorit

hm, 

Marko

v chain 

Composi

tion of 

Indian 

Classical 

Music 

[24] Evolution

ary 

Computati

on-based 

Music 

Compositi

on 

LSTM 

networks, 

Grey wolf 

optimizer 

Generates 

music with 

coherence 

and 

authenticit

Y 

Limited 

explorati

on in 

music 

recomme

ndation 

from 

dance 

motions 

Accurate 

generatio

n of 

melodic 

sequence

s 

NIL NIL LSTM Evaluati

on of 

generate

d 

melodies 

[25] Neural 

Network-

Based 

Music 

Recomme

ndation 

System 

Music 

recommend

ation 

system 

using neural 

networks 

Provides 

dynamic, 

personalize

d 

recommend

ations 

Limited 

to 

recomme

ndation 

system 

Demonst

rated 

feasibilit

y and 

effective

ness in 

experime

nts 

NIL NIL LSTM

-AE 

models 

Accurac

y of 

genre 

recomm

endation 

[26] Genetic 

Algorithm 

for Indian 

Classical 

Music 

Compositi

on 

GA and 

Markov 

chain 

method for 

raga-based 

music 

composition 

Efficiently 

generates 

melodic 

sequences 

preserving 

raga 

constraints 

Complexi

ty in 

parameter 

tuning 

Efficient 

and 

authentic 

raga-

based 

composit

ions 

Efficie

nt 

compo

sition 

metho

d 

High 

fidelity 

to raga 

constrain

ts 

Geneti

c 

operat

ors, 

Marko

v chain 

model 

Composi

tion 

evaluatio

n, raga 

authentic

ity 

[27] LSTM-

Based 

Music 

Generatio

n with 

Data 

Analysis 

LSTM 

network for 

melodic 

sequence 

generation 

with data 

analysis 

Captures 

tone, 

rhythm, and 

artistic 

attributes of 

high-quality 

music 

Requires 

MIDI 

data 

format 

Authenti

c and 

high-

quality 

music 

generatio

n 

Efficie

nt 

featur

e 

extract

ion 

High 

music 

attribute 

capture 

LSTM 

networ

ks, 

MIDI 

data 

Feature 

capture 

metrics, 

subjectiv

e 

evaluatio

n 

 

III. FUNDAMENTALS: 

3.1 RNN Networks: 

RNN, are a specialized type of artificial neural network designed to effectively model sequential data, including 

time series, text, audio, video, and various other forms. These networks are especially beneficial for tasks that 

involve sequences of data as inputs and outputs, and where there is a correlation among the elements 

within the sequence. RNNs, feed-forward neural network is specifically designed for modeling in the temporal 

realm. What sets them apart is their capacity to transmit information across different time intervals. Their 

architecture includes a parameter matrix for connecting time steps, allowing for training and utilization of 

sequential input data. RNNs are trained to produce output by considering both current input and data from 

previous time steps. They are particularly useful for analyzing temporal datasets. At its fundamental level, an RNN 

has a straightforward design, with a feedback loop incorporated into the network that enables the retention of 
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information. This loop enables the network to store a form of "memory" of past inputs. The general structure of an 

RNN resembles the following: 

• Input:  tx is the input, time ( ) 

• Hidden State:  hidden state at time ( ). it inform about the sequence seen up to time . 

• Output: is the output at time( ) 

The RNN equations is summarized: 

   (1) 

Here, Weight matrix is   hidden state, time , Weight matrix  for the input at time , Weight matrix 

is  for the output, Bias terms are , , Activation function is  for hidden state, activation function is 

usewd for output. RNNs can be trained using a technique known as BPTT, which is an expansion of the traditional 

back propagation algorithm designed to handle the recurrent nature of the network. This approach has found 

application in a wide array of tasks. For instance, in Natural Language Processing (NLP), it has been instrumental 

in tasks such as machine translation, sentiment analysis, and named entity recognition. Moreover, RNNs have 

been employed in Time Series Prediction tasks, ranging from forecasting stock prices and weather patterns to 

energy load forecasting. Furthermore, RNNs have been pivotal in Speech Recognition endeavors, where they 

facilitate the conversion of spoken language into text. In the domain of Computer Vision, they have been utilized 

for Image Captioning tasks, generating descriptive textual summaries for images. Additionally, RNNs have made 

notable contributions in the realm of Music Generation, enabling the creation of new music sequences based on 

existing ones.Nonetheless, RNNs encounter certain challenges. Among these is the problem of vanishing and 

exploding gradients, which can impede the network's ability to effectively learn long-term dependencies. Another 

challenge is memory limitations – capturing long-term dependencies in sequences can be tricky for basic RNN 

architectures. Furthermore, RNNs can be slow to train, especially when dealing with long sequences. There are 

different types of RNNs that have been developed to address these challenges. The first type is Vanilla RNNs, 

which are the basic form of RNNs as described above. More advanced architectures such as LSTM have been 

developed to address the vanishing gradient problem, incorporating memory cells to facilitate learning long-term 

dependencies. Another notable architecture is the GRU, which streamlines the network by merging input gates. 

Despite these challenges, RNNs have been instrumental in the progress of sequence modeling, opening avenues 

for numerous applications across diverse fields such as natural language processing and time series analysis. 

Following statements have explained in figure 1. 

 

Figure 1 - Structure of RNN 

3.2 LSTM Networks: 

LSTM networks, introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997, represent a specialized form of 

RNNs designed to overcome the limitations of conventional RNNs in capturing long-term dependencies within 

sequences. They have gained widespread popularity and effectiveness in tasks involving sequential data. The 
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structure of LSTMs involves memory blocks that include gates to regulate the movement of data. The central 

concept of LSTMs is the cell state, which remains constant throughout the chain and only has minimal linear 

interactions. These cell states function as a conveyor belt, facilitating the transfer of information without alteration, 

except for a few linear interactions. This design allows LSTMs to retain information for extended periods. The 

LSTM cell have a main components are: 

• tC : This is the line at the top of the diagram that runs vertically and allows for information to flow without 

interference, preserving the information. 

• : This gate, known as the "forget gate," plays a crucial role in determining what information to retain or 

discard from the cell state. It takes inputs from both the previous hidden state  and the current input , 

generating a value between 0 and 1 for each element in the cell state. A value of 1 indicates "keep this," while a 

value of 0 indicates "discard this." 

• : The "input gate" is responsible for determining the new information to be incorporated into the cell state. 

This gate comprises two components: a sigmoid layer, which determines the values to be updated, a tanh layer, 

which generates a vector of new potential values to be added to the state. 

• : The "output gate" merges the current input and the previous hidden state to decide the output 

based on the cell state. Its function results in a filtered version of the cell state being produced as the output. 

LSTM cell equations governing as follows in the table 2: 

 

Table 2 - LSTM Cell Equations 

Gates Equations 

Forget Gate ( )  

Input Gate ( ) 

 

Update the Cell State ( )  

Output Gate ( ) 

 

Where,sigmoid function( ),   - new candidate values,  - updated cell state,  - hidden state,  and  

are weight matrices and bias vectors. Overall, LSTM networks have demonstrated their effectiveness in capturing 

complex relationships in sequential data, making them an essential tool in deep learning and artificial intelligence. 

As discussed in above statements explained in fig. 2. 

 

Figure 2 - Structure of LSTM 

3.3 GRU Networks: 

GRUs represent a variant of the RNN framework designed to address the limitations of traditional RNNs, 

particularly in terms of their training speed and ability to grasp long-term relationships within sequential data. The 
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architecture of GRUs shares similarities with LSTMs, both capable of capturing long-term dependencies, but 

GRUs are simpler in design. GRUs consolidate the input gates of LSTMs into a single "update gate" while also 

incorporating a "reset gate" to control the amount of past information to forget. 

Key components of GRU cell: 

1. Update Gate ( tz ): This gate determines the amount of previous data to retain and the amount of new data to 

incorporate. It integrates the forget and input gates found in an LSTM system. 

   (2) 

2. Reset Gate( ): This entrance dictates the amount of previous data to discard. 

   (3) 

3. Current Memory Content( ): This refers to the latest candidate initiation. 

   (4) 

4. Update the Hidden State( ): This merges a prior concealed state with memory content present. 

   (5) 

Here,  sigmoid function, element- wise multiplication ,( )update gate( )reset gate, ( )current memory 

content,  hidden state, weight matrices. Overall, Because of their efficiency, simplicity, and 

effectiveness in capturing dependencies, GRUs have emerged as a preferred option for tasks that involve 

sequential data within the realms of deep learning and artificial intelligence. Despite being simpler than LSTMs, 

they have proven to be powerful tools for various applications. As discussed the above statements in figure 3.  

 

Figure 3 - Structure of GRU 

IV. AUTOMATIC MUSIC COMPOSITION SYSTEM (AMCS-RNN) DESIGN: 

A system known as AMCS, which utilizes the RNN algorithm, is a type of computerized system that leverages the 

capabilities of RNNs specifically designed for sequential data, with the goal of producing musical compositions.  
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4.1 RNN based on the Composition System of Music: 

The proposed method introduces an advanced GAN (Generative Adversarial Network) model specifically 

designed for composing melodies based on bars. Figure 4 outlines the entire process of the system for melody 

composition. Initially, the pretreatment phase involves the generation of the requisite training data for the model. 

An algorithm is employed to differentiate the high frequencies of the melody from non-melodic elements. 

Melodies are then extracted from the music to serve as training data, utilizing a filter based on a shallow structural 

description. These extracted melodies are further segmented into individual bars using tempo information acquired 

from the MIDI file.  

Subsequently, each bar, containing pitch, start time, duration, and intensity features for every note, is encoded into 

a high-dimensional matrix. These encoded bar matrices are then standardized to a consistent dimension size. 

Advancing to the MIDI file generation stage, new melody matrices are created through training with the enhanced 

GAN model using the preprocessed training data. The enhanced GAN model consists of a single generator and 

two discriminators. These discriminators include an RNN-based discriminator, capable of considering melody 

characteristics as time-series data, and a CNN-based discriminator, which analyzes the overall melody structure. 

During operation, the generator generates new melody matrices based on noise vectors and presents them to both 

discriminators for evaluation. 

 

Figure 4 - A Proposed Melody Composition System. 

The evaluators then determine if the input melodic matrices were created by the generator or taken from 

preexisting MIDI files. All three components - the discriminators and the generator - are trained based on the 

assessments made by the evaluators. The inclusion of an RNN network, specifically LSTM, is critical for handling 

sequential data with time-related attributes. LSTM introduces key elements such as input gates, forget gates, 

output gates, and memory states which are not present in traditional RNNs. This design addresses the common 

problems of gradient disappearance and explosion in RNNs by incorporating these new structures. The flow of 

data through each gate is controlled by the sigmoid function. During processing, the input gate retrieves 

information from each time step's input bar and adds it to the memory state. Conversely, the forget gate selectively 

discards certain information from the memory state based on the input bar. As a result, the updated memory state 

at each time step predicts the next input bar. This predicted bar then becomes the input for the subsequent time 

step after sampling. Figure 5 shows a depiction of the generator's structure (G). 
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Figure 5 - An Overview of Generator (G) 

By repeatedly following this process, a sequence of bars with time-related characteristics, representing melodies, 

can be produced. The data flow is summarized as follows: The input to the generator (G) is a group of noise 

vectors (N), which contains the same number of vectors as the desired amount of bars to be generated. For each 

melody matrix (vGij) generated by G, it consists of an equal number of bar matrices (vGij) as the intended amount 

for generation. The Bi-LSTM layer comprises a forward and backward LSTM layer. Unlike traditional models, Bi-

LSTM allows for simultaneous analysis of melodies from both directions, resulting in more accurate evaluations. 

The inputs to the discriminator (R) include vij generated by G and vij extracted from a set of matrices (V). The 

forward LSTM layer processes vGij and vij in a forward direction, while the backward LSTM layer analyzes them 

in reverse. These layers are connected to the FC layer, which determines the final result, QR. 

In this proposed enhanced GAN model, a second discriminator (C) is introduced to ensure the rationality of the 

produced bars. Unlike traditional models, this one incorporates two discriminators. C utilizes a CNN model with 

two hidden layers: a convolutional layer and an FC layer. CNNs are well-known for their effectiveness in tasks 

such as image recognition and classification. Our approach focuses on composing melodies based on bars rather 

than individual notes. Thus, each bar is encoded into a high-dimensional matrix similar to an image. Through 

convolutional operations, the key features of each bar are carefully extracted, allowing for a detailed analysis of its 

internal structure. In this setup, G represents the generator while R and C serve as discriminators. N denotes the set 

of noise vectors and V refers to a collection of melody matrices with various melody tracks encoded within them. 

Each vi represents a melody matrix extracted from V. Figure 6 illustrates the structure of the discriminator (C). 

 

Figure 6 - An Overview of Discriminator (C) 

Discriminators C and R within the proposed GAN model are responsible for deriving determination results based 

on the correlation between each bar and the rationality of the bars, respectively. These results are utilized to train 
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the discriminators by maximizing the loss, as depicted in Equations (6), employing the functions, 

, respectively. 
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−+=
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  (6)

 

The training process for the generator, outlined in Algorithm 1, involves optimizing the loss function () (as 

defined in Equation (7)). This loss function is designed to take into account the determination results provided by 

both discriminators, C and R, in a comprehensive manner. 

   (7) 

Algorithm 1. Training Process for the Generator: 

START 

 Initialize generator G, discriminator R, discriminator C 

 Initialize N 

 For  to iterations count 

    For  to batch size 

       From V 

       Inform R by  

       Inform C by  

       Inform G by  

     End 

 End 

STOP 

4.2 Extraction and Classification 

Initially, each of the audio clips underwent segmentation into smaller segments. This step was essential due to the 

substantial variation in spectral characteristics across the entire clip, which posed challenges during analysis. The 

clips were segmented into frames, each consisting of 256 sample points, with an overlap of 100 sample points 

between consecutive frames. An observation made in various frames revealed discontinuities, which manifested as 

spectral leakage. To mitigate this issue, the frames were multiplied by a windowing function. In this case, the 

Hamming window was employed for this purpose. 
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An extraction in standard LSF features was performed on the segmented clips in a frame-by-frame fashion. LSF 

was selected for its superior quantization capability and effectiveness. the method, a audio signal represent the 

output of an all-pole filter , with its inverse denoted as . Here,  represent the predictive 

coefficients.  

  (9) 
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The LSF was drive by decomposing  into  and , as described below. The characteristics of 

different sizes were gathered, with each size corresponding to a specific range of frequencies. Afterwards, the total 

of coefficients for each range was calculated, allowing for the ranking of ranges from lowest to highest. This 

sequence of ranges provided understanding into the presence of energy across various frequencies. Additionally, 

statistical measures like average and standard deviation were computed for these ranges. Then, the change in rank 

and statistical measures between consecutive ranges was calculated to capture any variations. These change in 

rank and statistical measure values were used as features. The 5, 10, 15, 20 and 25 dimensions were calculated for 

the audio clips in a frame-by-frame manner.  

For example, a 1-second clip resulted in 440 frames, resulting in a feature space of 2200 dimensions for just the 5-

dimensional LSFs. However, LSF-deltaG-deltaS features of different dimensions -13, 28, 43, 58 and 73- were 

obtained for the LSFs ranging from 5 to 25 dimensions. These features were not affected by the length of the clip 

or lower dimensions. Deep learning is currently considered one of the most widely adopted and effective methods 

in machine learning. Its prowess has been prominently showcased across diverse domains of pattern recognition. 

In this context, a RNN based classifier employing LSTM was utilized. This architecture possesses a distinct 

advantage in preserving states compared to conventional neural networks, making it adept at handling sequences. 

The AMCS-RNN framework serves as a versatile deep learning technique, adept at handling lengthy sequences. It 

notably tackles the vanishing gradient challenge often encountered in basic RNNs, providing an advantage, 

especially in complex and prolonged scenarios. At the heart of an LSTM block lies a crucial component called the 

cell state, which retains long-term memory. This structure incorporates three essential gates: the forget gate, input 

gate, and output gate. The input gate (in) assumes a critical role in generating the values required to compute the 

new state, as illustrated below: 

  (10) 

the values required to compute the new state of the generation input gate (in) : 

  (11) 

the retention or discarding of values from the previous state in the current state, regulates forget gate: 

  (12) 

the values necessary for determining the next state produces output gate: 

  (13) 

The computation of the cell state  intermediate cell state cn is presented: 

  (14) 

Finally, the new state  is generated as follows:  

  (15) 

During the study, a 100-dimensional LSTM layer was followed by three fully connected layers of sizes 100, 50, 

and 25. These layers used ReLU activation functions. The last layer was a 2-dimensional fully connected layer 

with softmax activation. At first, the training was set to 100 iterations and a 5-fold cross-validation 

method was used. Following experimental trials, the network architecture and its associated parameters were 

finalized and kept constant for subsequent evaluations. This approach ensured a consistent and stable experimental 

setup for the AMCS-RNN classifier. 

)(zR )(zRx
)(zRy

),( 1 ninin XWtSWti += −

),( 1 ninin XWtSWtf += −

)tanh( 1 ncncn XWtSWto += −

)tanh( 1 ncncn XWtSWtc += −

nC

)(*

)*()*( 1

nnn

nnnnn

Ctahnoh

cfciC

=

+= −

nh

)(* nnn Ctahnoh =



J. Electrical Systems 20-3s (2024): 355-373 

369 

V. EXPERIMENTAL DEMONSTRATION: 

5.1 Proposed AMCS-RNN Performance 

The core component of the model is a multi-layer LSTM, supplemented by a dropout layer and a time-distributed 

dense layer. The dropout layer is included to prevent overfitting, while the time-distributed dense layer handles the 

outputs at each timestep. The SoftMax classifier is chosen to accommodate the multi-class classification problem. 

In order to predict multi-label outputs, the SoftMax classifier is utilized. This type of classifier uses cross-entropy 

loss to convert raw class scores into positive numbers that sum up to one, ensuring better performance with cross-

entropy loss. Figure 7 illustrates that the LSTM model contains 1904k parameters. 

 

Figure 7 – LSTM Model 

5.1.1 Automatic Music composed by model: Below figure 8 shows LSTM model is generated with the presence 

of epoch number weight.  

 

Figure 8 – Music Generation of LSTM 

5.1.2 Frequency vs Loss Calculation: Prior to training the RNN, it is essential to examine the frequency 

distribution of musical components within the training dataset. This is necessary to ensure that the model is 

exposed to a diverse array of musical patterns and does not develop a preference for specific elements. The loss is 

computed by comparing the model's predictions during training with the actual musical elements present in 

dataset. By utilizing back-propagation and optimization techniques such as gradient descent, the model can 

gradually reduce this loss and gain a deeper understanding of the underlying patterns in the musical data. Figure 9 

shows the loss vs frequency plot which depicts the minimum loss at high frequency and less frequency at high 

loss. 
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Figure 9 – Frequency and Loss Calculation 

5.1.3 Frequency vs Accuracy Calculation: Before beginning to train the RNN, it is essential to examine the 

frequency of various musical components within the training dataset. This process aids in the model's 

comprehension of the distribution of musical patterns and enables it to generate compositions that are in line with 

the observed frequencies. Once trained, accuracy is measured by assessing how closely the model's generated 

compositions match the expected musical patterns. This metric serves as a quantitative measure of how accurately 

the model can replicate the frequency distribution observed in the training data. Figure 10 shows the accuracy vs 

frequency plot which depicts the maximum accuracy at high frequency and less frequency at low accuracy. 

 

Figure 10 – Frequency and Accuracy Calculation 

5.1.4 Epoch vs Loss Calculation: Loss is defined as that every epoch, the model makes predictions for the 

musical data in the training set, and the loss is determined by comparing these predictions to the real musical 

elements. The current performance of the model is measured by this loss, with higher values indicating a larger 

difference between predictions and actual data. The training process involves multiple epochs, during which the 

model fine-tunes its internal parameters to better capture patterns in the training data. The ultimate objective is for 

the model to accurately produce music that reflects these desired patterns. As shown in Figure 11, there is a clear 

decrease in training loss as the number of epochs increases, from 0.3822 at 40 epochs to a final loss of 0.1901 

after 900 epochs. 
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Figure 11 – Epoch Vs Loss Calculation 

5.1.5 Epoch vs Accuracy Calculation: Accuracy calculation in each cycle is defined as that the model makes 

predictions for the musical data in the training set. After training or during evaluation, accuracy is determined by 

comparing the model's generated compositions with the expected musical patterns. This measure provides a 

numerical representation of how accurately the model can replicate the desired musical elements. The calculation 

of epoch is the training process involves repeating multiple cycles. With each cycle, the model adjusts its internal 

parameters in an effort to enhance its accuracy in creating music that corresponds to the desired patterns. Tracking 

accuracy over several cycles allows for evaluation of the model's effectiveness in learning and adapting to 

unfamiliar musical data. The model is executed for a total of 90 cycles, leading to a decrease in training loss with 

each successive cycle. This ultimately leads to a training accuracy rate of 95%. A visual representation of this can 

be seen in Figure 12, where the graph shows the relationship between epochs and accuracy. It displays the 

progression of training accuracy values as they correspond to the number of cycles. At 20 cycles, the training 

accuracy is 85% and then steadily rises from 50 cycles onward, reaching a final rate of 95%. 

 

Figure 12 – Epoch Vs Accuracy Calculation 

5.1.6 Loss vs Accuracy Calculation: The model's loss is calculated by contrasting its forecasts with the actual 

musical elements during both training and evaluation. This serves as a measure of the model's effectiveness, with a 

lower loss indicating a strong alignment between predictions and real data. On the other hand, accuracy evaluates 

the overall correctness of the model's predictions by comparing the number of correct predictions to the total 

number of predictions. A higher accuracy value shows a greater proportion of correct predictions. Figure 13 shows 

the loss and its corresponding accuracy of epochs. Initially, loss is high and accuracy at low epochs and then 

accuracy is gradually increased and loss is reduced at high epochs. 
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Figure 13 – Loss Vs Accuracy Calculation 

The table 3 shows that the proposed AMCS-RNN provides high accuracy 95% than traditional LSTM accuracy 

92% and low Mean Square Error 0.097. 

Table 3 – Performance Analysis 

Approaches Accuracy MSE 

LSTM 92% 0.24 

Proposed AMCS-RNN 95% 0.097 

VI. CONCLUSION: 

The use of RNNs in the AMCS has revolutionized computer-generated music. By utilizing RNNs, the system can 

recognize and learn complex patterns and connections within musical sequences, resulting in compositions that are 

highly intricate and innovative. Through extensive training with a large dataset of musical examples, the system is 

capable of producing compositions that not only imitate but also push the boundaries of existing musical styles. 

This AMCS, based on RNNs, offers a promising future for music creation as it complements human creativity and 

expands the possibilities of musical expression. With ongoing advancements, this technology has the potential to 

revolutionize our comprehension of music composition and make significant contributions to the constantly 

evolving realm of artistic creation. 
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