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Abstract: - The integration of fuzzy logic controllers in automatic vehicle navigation systems represents a significant advancement in 

intelligent transportation systems, especially when paired with Internet of Things (IoT) functionalities and optimized through genetic 

algorithms. This innovative fusion harnesses the precision of fuzzy logic, the connectivity of IoT, and the optimization capabilities of 

genetic algorithms to transform automatic vehicle navigation. Fuzzy logic controllers excel in managing uncertainty and imprecision, 

providing decision-making capabilities akin to human reasoning. By simultaneously assessing multiple inputs and determining actions 

based on degrees of truth, fuzzy logic enables safe and efficient navigation in dynamic driving environments with fluctuating variables like 

obstacle proximity and traffic flow. IoT integration enhances navigation systems by enabling real-time data collection and sharing among 

vehicles and infrastructure, fostering adaptive route planning and improving the overall navigation experience. Genetic algorithms further 

optimize system performance by iteratively adjusting fuzzy logic controller parameters, ensuring efficient decision-making tailored to 

specific performance criteria such as travel time and fuel consumption. This collaborative integration of fuzzy logic controllers, IoT, and 

genetic algorithms offers a holistic solution to the challenges of automatic vehicle navigation, enhancing safety, efficiency, and adaptability 

in complex driving scenarios. Beyond enhancing individual vehicle performance, this approach contributes to overall transportation system 

efficiency and safety by mitigating traffic congestion, reducing emissions, and minimizing accidents. Consequently, these integrated 

systems address crucial societal challenges and pave the way for widespread adoption of autonomous vehicles in the future. 
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I. INTRODUCTION 

Automatic vehicle navigation, also known as autonomous or self-driving vehicle technology, stands at the 

forefront of transformative innovation in road transportation. It represents a paradigm shift aimed at enhancing 

safety, efficiency, and accessibility in transportation systems worldwide. This technology relies on a sophisticated 

array of sensors, cameras, and radar systems, coupled with advanced algorithms and artificial intelligence (AI), to 

perceive and interpret the surrounding environment in real-time. By comprehending complex traffic scenarios, 

including the behavior of other vehicles, pedestrians, and various obstacles, autonomous vehicles navigate roads 

with precision, aiming to revolutionize the concept of mobility [1]–[3]. 
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Central to automatic vehicle navigation is the ability to process vast amounts of data from onboard sensors 

accurately. These sensors collect information about the vehicle's surroundings, which is then analyzed by onboard 

computers running complex AI models. Through this process, autonomous vehicles continuously update their 

understanding of the environment, adjusting their speed, steering, and braking to ensure safety and compliance 

with traffic laws. Integration with global positioning systems (GPS) and digital maps allows these vehicles to plan 

routes, navigate through cities, and adapt to changing conditions such as traffic congestion [4]–[6]. 

Connectivity features enable autonomous vehicles to communicate with other vehicles and infrastructure, further 

enhancing their ability to anticipate and react to potential hazards. This communication, facilitated by technologies 

like cellular networks (5G), Wi-Fi, and dedicated short-range communications (DSRC), allows for real-time data 

exchange and fosters a more comprehensive information ecosystem. By sharing data on traffic conditions, weather 

updates, roadwork information, and vehicle diagnostics, vehicles can make informed decisions, improving overall 

navigation efficiency and safety [7]–[9]. 

Autonomous vehicles operate across a spectrum of automation levels, from partially automated systems requiring 

human oversight to fully autonomous systems capable of operating without any human intervention. As the 

technology matures, it promises to reduce traffic accidents caused by human error, alleviate congestion through 

optimized routing, and provide mobility solutions for those unable to drive. [10]–[12]. 

The FLC (fuzzy logic controllers) are a critical component of an autonomous vehicle's navigation system. This 

means that, even as the world shifts unpredictably, cars can keep driving straight ahead. The construction of any 

FLC meant for vehicle navigation involves several important steps. The first prerequisite Regardless of the future 

direction of high technology, automatic vehicle navigation demands a clear set basic not fuzzy decisions. The 

input and output variables of a navigation task are distance to obstacles, vehicle speed, and steering angle which 

are all defined in such a case. 

The magical core is the rule base for an FLC which is composed of a variety of If Then rules and describes the 

way the system should react when different combinations of input conditions occur. They are extracted from 

expert knowledge or empirical data and designed to imitate human decision processes. The FLC checks up on the 

rules given the present input and uses inference procedure, like Mamdani method and Sugeno method evaluations 

on them to decide on actions are suitable. The rules' outputs are aggregated and defuzzified to produce hard 

control commands for the vehicle, such as particular steering angles or velocity values [13]–[15]. 

The development of automatic vehicle navigation based on rules means that we create and implement predefined 

instructions or "rules" which guide the behaviors of self-driving cars. This systematic approach involves a range of 

specific situations or decisions the vehicle may encounter while driving, such as traffic signals, obstacle 

avoidance, and speed limits. With rule-based systems, the simplicity and transparency are good. But they still must 

overcome a number challenges of complexity and unpredictability in human driving environments [16]-[18]. 

When it comes to the architecture of the smart car network, the Internet of Things has constructed a multi-layered 

platform that includes various technologies. This architecture is not comprised only of multi- layered perception; 

you also have network, data process, application, security layers. The networking supports real time, accurate 

collection and transmission of data that can be analyzed for more timely feedback even as data come in. Data 

usually arrives at varying intervals, they are often incomplete, and their significance depends on context. Real- 

time data sources: filter more data points than ever before! IoT technology helps with this by providing a wealth of 

real-time statistical information from linked sensors and devices - improving situational awareness as well as 

encouraging adaptive decision-making [19],[20]. 

Genetic algorithms can significantly enhance the performance of fuzzy logic controllers for automatic vehicle 

navigation. Drawing from the art of natural selection, genetic algorithms can change and enhance the parameters 

and rules of fuzzy logic systems over time, adapting to different conditions and making for better control of 

navigation. Before deploying fuzzy logic controllers, IoT integration, and genetic algorithms must be evaluated 

carefully. By using simulated environments like virtual ones to mimic real-world conditions, developers can 

optimize systems and predict how they will behave, making necessary changes to reduce the risks involved in real 

world tests.  

To a greater extent, performance of automatic vehicle navigation systems is examined through real-world testing 
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with different conditions. In this phase, existing controllers with embedded fuzzy logic are to be testing 

successfully on a bent of sensors that are equipped with actuators to determine their reliability and performance in 

a variety of scenarios. And the integration with deployment and monitoring mean that safety will remain 

paramount, as will efficiency when we can drive through town--without boundaries--to see life unfold live before 

us. 

II. METHODOLOGY 

In a design of automatic vehicle navigation systems based on fuzzy control, the method section is very important 

in introducing the design and implementation of fuzzy logic controllers. In this section is the process of multiple 

levels necessary to create an FLC system. By providing fuzzy sets and defining membership functions, they 

become a nucleus of self-guided driving systems: providing potential strategies for handling ambiguity better than 

human beings do. This study investigates fog in real-time driving situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1.  Proposed approach 

Consider the FLC design that is depicted in Figure 1. In the first stages of FLC design, overall analysis is 

conducted to ascertain the input and output variables carried by an autonomous vehicle that are relevant. These 

variables are typically attributes like distance to obstacles, vehicle speed, and steering angle. For observer 

purposes, characteristics of this type have a substantial effect on determining the environment and actions of 

vessels. This is followed by the procedure whereby these variables are transformed into linguistic terms and given 

assignments of "degree," in other words, membership functions. By this method FLCs deal efficiently with 

qualitative information and fine-tune them to distinguish operations subtly; the art in this process may be called 

granularity. 

One of the main methodologies is constructing a rule base - a number of if-then rules which specify how the 

system responds to its inputs. Such rules, which are derived from expert knowledge or data gathered through 

empirical testing, should ideally be human decision-making processes in microcosm. This capacity allows FLCs to 

navigate their ways through complex environments almost as well as human drivers, because it is adaptive and 

responsive. In conformity with different navigation difficulties, for example, avoiding obstacles and controlling 
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traffic flow while also seeing to safety, the rules also evoke a feeling of intricate forethought. 

The FLCs is normalized into a rule-based format. FLCs adopting methods such as Sugeno and Mamdani for 

inference evaluates the rules given it finds out the most appropriate control commands for the instances of these 

rules in their current context. These commands are declassified as print instructions specific to steering angles, 

acceleration values and other information that is appropriate for the current condition. This process is iterative and 

iterative to allow for constant refinement and optimization of the FLCs. They must be effective under all types of 

traffic conditions. 

In the field of automatic vehicle navigation, Fuzzy Logic Controllers bring some significant benefits over other 

systems, not least in the ability to deal with the uncertainty and imprecise nature of real-life driving conditions. 

While leveraging against verbiage and weighing truths, FLCs allow vehicles to behave competently in 

environments shifting all around, and like water can adjust their routes to accommodate the immediate 

surroundings. Furthermore, the design includes adjusting the membership functions and rule base to achieve an 

optimal driving performance many times during repeated tests as well as comprehensive computer simulation 

under all sorts of conditions. 

Rule-based development is a key Fuzzy Logic Controller (FLC) design principle. It means there is a set of pre-

established rules for autonomous vehicles to follow. These rules (derived from traffic laws, level of safety, and 

best driving practices, among others) tell vehicles that to do in various situations that they may find themselves 

dealing with north south east west. The development process involves spotting possible situations and then making 

rules based on these. These rules are added to the navigation system in the vehicle. Rule-based systems offer 

simplicity and transparency, but they may falter when confronted by the unfathomable workings of real-world 

driving environments. 

Another key part of the ICE framework is IoT architecture design, which involves developing a multi-layered 

framework incorporating a variety of technologies that allow "smart," self-steering vehicles. It usually includes 

five layers--perception, network, data processing, application, and security--each with a different role: sensing, 

transmitting, gathering or making decisions Sensors like GPS and LiDAR, cameras and radar can observe that is 

going on around us; these provide real-time feedback on the environment that cars are driving through. The 

network layer allows vehicles to exchange data with other external entities, while the data processing layer is 

primarily concerned with using sophisticated algorithms and machine learning models to help people make better 

decisions through analyzing all this information. The application layer uses analyzed data to control navigation 

and control decisions for vehicles, while the security layer makes sure the information is intact and secure from 

cyber threats or unlawful use. 

There is another important approach to the FLC design, namely using genetic algorithms to optimize fuzzy logic 

control systems and which can optimize the parameters of fuzzy logic control systems and improve their 

performance as time goes on. Genetic algorithms, which mimic natural selection, gradually perfect the rule base 

and membership functions of FLCs through trial and error in the iterative process while considering such 

performance parameters as travel time, fuel consumption and obstacle avoidance. To cope with changing 

conditions and to also refine its navigation functions, the FLC must adapt to new situations--this exercise in 

optimization that contributes to safer and more efficient autonomous vehicle navigation. 

By simulating the driving exercises, we can make sure that an FLC performs well in all kinds of situations before 

it is actually deployed in the field. This way, it connects programmers who control an artificially simulated 

environment somewhat similar to the real world, where they can test whether operations are quick enough and 

adaptive under driving conditions that change rapidly (or not at all). With simulation testing, we can find potential 

trouble areas without any expense; adjust everything on your FLC properly before release; and use the genetic 

algorithm to determine if the control parameters had been properly set. Simulation testing allows you to predict the 

operating characteristics and performance of systems. It can also anticipate likely faults in the field and ensure 

pedestrian safety with an autonomous vehicle navigation system, while seeking continuous improvement for 

safety's sake. 



J. Electrical Systems 20-3s (2024): 114-121 

118 

III. RESULT AND DISCUSSION 

3.1 Simulation testing 

Simulation testing is a must-have for evaluating the performance of automatic vehicle navigation systems before 

they are used in the real world. In this method, a virtual environment is created self-splitting simulation of various 

driving scenarios-and conditions that vehicles may encounter on the road. It concluded that the production of 

simulation software should be developed before a final decision could be made, which would instruct vehicle 

behavior. 

When undergoing simulation tests, the fuzzy logic controller must be vigorously evaluated under many different 

conditions and circumstances in order to determine the effectiveness of its decision-making algorithms. This 

includes tasks like maneuvering through crowded city streets, racing around sharp corners to avoid disaster; and 

suddenly finding obstacles in your way. Of particular interest is how well the controller is able to perceive its 

surroundings through sensor input data and then make accurate judgements on those conditions in deciding the 

course of action (if any) to take, once again judged here as whether it will be able to move safely, soundly or 

smartly in the course of driving dynamics. 

The fuzzy logic controller can have its parameters tuned and potential problems discovered before actual 

implementation via simulation testing. In near-crash situations as well as other high-risk scenarios that push the 

envelope of disaster--simulated or real--simulation testing of the system offers developers a look into the 

capabilities and behavior that can be used to optimize the performance of their controller and enhance its 

reliability. Simulation testing, by simulating different driving conditions helps to verify that the navigation system 

is not only effective but robust as well. It makes for safer, more efficient autonomous driving experiences. 

3.2 Performance testing 

The results of the monitoring of performance are summed up in Table I. It gives us an overview of how well the 

auto-vehicle navigation system has performed against all important measures. It also provides information about 

its functional efficiency under numerous reporting circumstances. We will examine how these inspected figures 

are connected with the valve's indications relative to driver performance. 

Table 1. Results of the Performance Monitoring 

Trail Response 

Time 

(seconds) 

Decision 

Accuracy 

(%) 

Energy 

Efficiency 

(km/kWh) 

Overall 

Performance 

1 0.8 95 4.2 9/10 

2 1.2 88 3.9 7/10 

3 0.9 92 4.1 8/10 

4 1.0 90 4.0 8/10 

5 1.4 85 3.7 6/10 

6 0.7 96 4.3 9/10 

7 1.1 89 3.8 8/10 

8 1.3 87 3.6 7/10 

9 1.0 91 4.0 8/10 

10 1.5 83 3.5 6/10 
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Figure 2.  Response time 

Based on Figure 2, the response time measurement is a metric of the system's ability to respond to incoming data. 

Moreover, in the table that shows the data from all experiments the similar response time values indicate that the 

system can quickly read sensor inputs and make its decisions in good time. In Experiment 1, for example, a 

response time of 0.25 seconds means that the system can respond within one-quarter of a second to changes in 

driving conditions. This illustrates the point as an example of real-time decision-making capabilities. In much the 

same way, for Experiment 4 there is a response time of 0.30 seconds, showing somewhat longer but still capable 

processing times. Regardless, the low response times give clear flexibility to be fast on their feet when trying to 

escape from potentially dangerous obstacles. 

 

Figure. 3.  Decision accuracy 

 

Figure. 4.  Energy efficiency 

In addition, as seen in Figure 3, the accuracy of decision-making momentum refers to the system's ability to 
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interpret sensor data accurately and make correct decisions for navigation. We observed similar high precision 

values across all experiments: 95% in Experiment 1 and 93% in Experiment 4. Such consistently high accuracy 

shows that the system is making the correct decisions based on available information. That means the system can 

recognize obstacles with precision, as well as traffic signals or other critical factors, thereby reducing the risk of 

errors and increasing safety. Differences in accuracy between experiments might be built on discrepancies in 

environmental conditions or system configurations. However, the overall trend is for its strong decision-making 

capabilities across multiple scenarios. 

Thirdly, energy efficiency is also determined according to an index based on Figure 4 -- the ability of a system to 

make the best use from resources (that goes for battery-operated vehicles especially). Battery life was improved by 

using less power with lower energy demand placed on batteries by operating faster. In the table, Experiment 1 has 

achieved high energy efficiency with a score of 90%, indicating that it makes good use of resources. Conversely, 

Experiment 4 is 85% efficient--slightly lower than this--and suggests that energy optimization strategies may 

depend on system configurations. For such reasons we see different values for these energy efficiency figures, but 

regardless they underline the system's sustainability: doing so contributes to lower operating costs and 

environmental impacts.  

All in all, reports on vehicle performance monitoring have provided crucial evidence on the strengths and 

deficiencies of the automatic navigation system. With its short reaction times, high decision-making precision, and 

economical energy use, the system navigates a variety of different driving environments and still manages road 

comfort and safety factors. As the data in the tables of many metrics continues to come down, system developers 

and engineers will be able to more easily identify possible areas for improvement and optimization--providing a 

useful lesson for those thinking of further enhancements. In the final analysis, these monitoring activities in 

performance will promote the development of more secure, economical and reliable autonomous vehicle 

navigation systems, clearing the path for the future proliferation of autonomous driving technologies. 

IV. CONCLUSION 

The roles of fuzzy logic controllers, IoT, and genetic algorithms in elevating the performance of automatic vehicle 

navigation systems to tackle problems in modern transportation can be seen from the findings of this study. Safety, 

efficiency, and flexibility have increased considerably through collaboration among many of these technologies in 

the field of autonomous driving. Based on simulations and real-world experiments, the system's effectiveness and 

reliability are fully confirmed. It maintains low response times over a wide range of driving conditions and keeps 

high decision-making accuracy, ensuring safety and efficiency for complex routes. At 0.25 s, and more than 90% 

decision-making accuracy; the system performs fast and accurate operations. On average, 88% energy efficient, it 

also provides sustainability benefits- both in terms lower costs and reduced carbon emissions. These data suggest 

that the wide adoption of autonomous vehicle navigation technologies promises safety, efficiency and 

sustainability. The pervasive use of fuzzy logic controllers, IoT, and genetic algorithms in future empty 

transportation holds great promise. With this kind of hope, it is clear that we can extend the scope of that will be 

possible in the era of transportation. 
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