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Abstract: - This study focuses on the typical geological region of granitic weathered soil in the hilly areas of southern China, integrating 

computer-assisted statistical methods and intelligent computing techniques to analyze geological disaster data and hourly precipitation 

data from 2016 to 2022. The research indicates that in the study area, geological disasters triggered by precipitation generally occur 

within 48 hours following the precipitation event. For 90% of the events, the average rainfall intensity is concentrated between 1.2 to 

27.7 mm/h, with 72% having an average rainfall intensity of less than 10 mm/h, and only 13% exceeding 20 mm/h. The influence of 

prior precipitation mainly depends on the cumulative effect of effective rainfall over the previous 11 days. Based on these findings, 

this paper constructs a meteorological risk prediction model for geological disasters using two parameters: the average rainfall intensity 

(I) and the duration of rainfall (D). After comparing the prediction results with 62 test samples from 2022, it is noted that the method's 

TS score is superior to other prediction methods, significantly reducing the false alarm and missed alarm rates for meteorological 

forecasts in the granitic weathered soil geological region. Moreover, the computer implementation of this model demonstrates its 

efficiency and reliability in handling large-scale geological data, providing strong computational support for geological disaster risk 

assessment. 
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I.  INTRODUCTION 

In the field of geological disaster prediction, the application of computer technology has become a key factor 

in improving the accuracy and efficiency of predictions. Traditional geological risk assessment methods often 

rely on human experience and qualitative analysis, while modern intelligent computing technologies, such as 

machine learning and deep learning[1], offer new possibilities for quantitative analysis of geological data. This 

study delves into computational geology research on the risk of geological disasters in the granitic weathered soil 

region by introducing mathematical statistics and big data analysis techniques, aiming to develop a more precise 

and reliable landslide risk prediction model.  

In the southern part of China, the terrain is characterized by more mountains and less flat land. The region 

frequently experiences small-scale geological disasters such as landslides and collapses[2]. Notably, a vast area of 

South China is covered with weathered granite soil[3]. The soil here has poor mechanical stability. Coupled with 

frequent human-engineering slope-cutting activities in recent years, it becomes highly susceptible to precipitation. 

Once the soil's superficial moisture content reaches a certain level, geological disasters like landslides, collapses, 

and terrain subsidence occur. Particularly, landslides, characterized by their short reaction times, small scales, and 

high frequencies, result in severe consequences[4-5]. They are the most common and typical geological disaster in 

South China. 

Precipitation, as the primary external factor inducing landslides[6], has long been the focal point of geological 

disaster warning and prediction. Numerous studies primarily focus on exploring and establishing early warning 

models for landslides in different geological environments. These include the dynamic risk assessment early 

warning model (using prior effective rainfall, superimposed forecasted rainfall to assess the susceptibility of 

geological disasters)[7], the dynamic early warning model (a slope dynamic model involving meteorological, 
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hydrological, and geological coupling)[8], machine learning early warning models, and critical rainfall judgment 

models. Among them, the latter has been most extensively researched and applied in practice. Studies on the 

critical rainfall judgment model can be categorized into three types: The first type establishes the relationship 

between rainfall and geological disasters using statistical methods. For instance, Dong et al.[9], Zeng et al.[10] 

initially constructed the meteorological forecast relationship for geological disasters in Guangxi based on 

individual disaster cases and daily precipitation. Li et al.[2] divided the country into nine regions, constructing a 

disaster probability fitting equation based on disaster samples and prior effective precipitation within those 

regions. The second type relates the rainfall intensity of the current event to geological disasters. Liao et al.[11] 

concluded that the critical precipitation amounts causing geological disasters in Lingshan County are 80 mm/d 

and 140 mm/d. Liang[12] selected the critical precipitation thresholds for landslides and collapses in the karst 

geological region of Northwest Guangxi as 50 mm/d and 120 mm/d. As research deepened, the influence of prior 

effective rainfall inducing geological disasters began to gain attention[13], leading to the development of the third 

common type: the dual-parameter (prior rainfall + current rainfall) forecast model. For instance, Wang et al.[14] 

believed that the correlation between the cumulative precipitation of the previous seven days and the occurrence 

of geological disasters was strongest. Yang ＆ Mao[15] proposed using the sum of the day's precipitation and the 

cumulative precipitation of the previous five days as the triggering threshold for geological disasters. Li ＆ Li 

.[16] introduced a combination model of regional critical daily rainfall and prior rainfall inducing landslides. Wen 

et al.[17] presented a linear relationship and critical precipitation threshold between the number of geological 

disasters in Longsheng County and the day's rainfall and the rainfall of the previous three days. 

Landslides, influenced by varying geological conditions, arise from complex and varied factors. When 

combined with the main inducing factor, precipitation, landslide warning and forecasting models differ 

significantly across regions. Although China has established a unified county-level meteorological risk early 

warning system for geological disasters, there's still a need to enhance and optimize localized warning models to 

meet the requirements of detailed disaster prevention and mitigation. This paper primarily focuses on researching 

the meteorological early warning model for typical granitic weathered soil landslides in the South China region. 

Wuzhou City, located at the junction of central Guangdong and Guangxi in South China, is selected as the 

representative study area. Building on previous studies and based on hourly precipitation and historical landslide 

event data, this research analyzes the impact of prior effective rainfall and the day's rainfall, establishing a regional 

landslide meteorological risk forecast model. This enriched and refined work provides a scientific basis and 

reference for predicting rainfall-induced landslides in similar soil regions. 

Ⅱ. DATA AND METHODS 

A. Data 

The landslide data of weathered granite soil used in this study comes from the Wuzhou City Geological 

Environment Monitoring Station. It consists of landslide records registered by technicians through field surveys 

between 2016 and 2022. To ensure data quality, this study excluded the landslide events that lacked specific 

occurrence dates, latitude and longitude, had no precipitation information for three days before and after, or were 

clearly caused directly by human engineering activities. Ultimately, we obtained 155 landslide case samples. 

Using the spherical nearest distance method[17], the distance between the landslide occurrence point and the 

nearest surrounding meteorological station was calculated. It was found that 86% of the landslide occurrences 

were less than 5 km away from the nearest automated meteorological station, which is also less than the average 

distance between automated meteorological stations in Wuzhou City (5.2 km). Therefore, the rainfall data from 

the nearby automated meteorological stations can closely reflect the precipitation conditions at the landslide 

occurrence points. 

B. Methods 

1) Precipitation Calculation Method and Parameter Optimization: Firstly, statistical modeling was carried out 

using 124 sample data from 2016-2021, and then the model's reliability was tested using 31 sample data from 

2022. A two-parameter landslide forecasting model was established, which involves pre-event effective 

precipitation and the average rainfall intensity of the current event. The calculation formula for pre-event effective 

precipitation[2] is: 

 =
=

n

k k

k

r rE
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Where 
rE represents the effective precipitation in mm; 𝑛 is the total number of days of precipitation before the 

landslide; 
kr  is the daily precipitation in mm, with 

1r , 
2r , ......

nr  being the precipitation on the day of the landslide, 

1 day before, 2 days before, and so on up to n days before the landslide. 

Most scholars in the past did not differentiate between precipitation areas when determining the value of n for 

pre-event effective precipitation. They uniformly used daily precipitation for the 15 days (i.e., n=15) before the 

disaster. The study area belongs to the rainy region of South China. From April to September each year is the 

main flood season. During this period, the occurrence of landslides coincides with the temporal and spatial 

features of frequent and high rainfall[18]. Given the uneven distribution of rainfall in the area, there's a need to 

further localize the optimization of the total number of days for pre-event effective precipitation. 

To facilitate the comparison of the proportion of daily rainfall in the previous 15 days during different rainfall 

intensities, the daily accumulated rainfall values of each landslide case in the previous 15 days were 

standardized[19]. Then, the average standardized rainfall values for all cases over the previous n days were 

calculated. This resulted in the daily distribution of the standardized deviation coefficients of rainfall for all 

landslide samples over the previous 15 days (Figure 1). Polynomial functions were used to fit these values, 

resulting in a distribution curve for the rainfall standard deviation coefficients. As can be seen from Figure 1, the 

fitting curve exhibits a nearly monotonic decreasing distribution. The curve reaches its minimum value of 

standardized deviation on the 11th day, indicating that the effective pre-event precipitation in Wuzhou City is 

mainly concentrated within the first 11 days. Thus, when using formula (1) to calculate the effective pre-event 

precipitation in this area, the number of rainy days n can be optimized to 11. 

 
Standardized Deviation Coefficient 

Unit: Day 

Figure 1: Average State Curve of Pre-event Rainfall 

2) Calculation of Average Rainfall Intensity for the Current Event: Another parameter involved in the landslide 

forecast is the calculation of the average rainfall intensity. Statistical analysis of the rainfall characteristics in the 

study area revealed that the duration of local rainfall does not exceed 72 hours. The contributions of rainfall over 

continuous 6-hour and 12-hour periods to the daily rainfall amount are 69.24% and 78.52%, respectively. This 

indicates that the precipitation in the study area is mainly influenced either individually or in combination by 

mesoscale weather systems with a lifespan of 6-12 hours. 

Therefore, when calculating the average rainfall intensity, start by sliding backwards from the time of the 

landslide to calculate the continuous duration (within 72 hours) of accumulated rainfall ≥10mm over 12 hours. If 

there exists a continuous rainfall process, i.e., the accumulated rainfall over several consecutive 12-hour periods 

is all ≥10mm, then the starting time of the first 12-hour accumulated rainfall ≥10mm is considered the end time 

of this rainfall event, and the starting time of the last 12-hour accumulated rainfall ≥10mm is considered the 

beginning of this rainfall event. From this, the duration D of the rainfall can be determined as D=end time−start 

time (unit: h). Next, calculate the total rainfall amount SR for the current event, which is the sum of hourly rainfall 

within the duration of the current rainfall event (unit: mm). Finally, the average rainfall intensity 𝐼 for the current 

event is the ratio of the accumulated rainfall to its duration, i.e., 𝐼 = 𝑆𝑅/𝐷 (unit: mm/h). 

Using this method to back-calculate the rainfall data for the landslide cases, it was found that the rainfall 

duration triggering landslides ranged from 1 to 48 hours. Among them, events with a rainfall duration of 1 hour 

accounted for about 32%, and those with a duration of up to 6 hours accounted for about 47%. The average rainfall 

intensity ranged from 0.2 to 55.4 mm/h. Specifically, cases with an average rainfall intensity between 1.2 and 

27.7 mm/h accounted for 90%, those with an average intensity <10 mm/h accounted for 72%, and only 13% had 

an average intensity ≥20 mm/h. 
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Ⅲ. ESTABLISHMENT OF METEOROLOGICAL RISK FORECASTING MODEL FOR LANDSLIDES 

Caine[20] proposed a fitting model for the average rainfall intensity (I) and duration (D) of the current rainfall 

event, which has been widely applied in landslide research and forecasting. The calculation formula is: 

𝐼 = 𝑎𝐷−𝑏+c                                                                                 (2) 

Where 𝐼 is the average rainfall intensity of the current event, D is the duration of the current rainfall, and a,b,c 

are the to-be-estimated parameters of the rainfall threshold curve. 

During data processing of individual cases, first sort the rainfall sample data by average rainfall intensity, 

eliminate the top and bottom 5% of samples, and then sort the remaining samples by prior effective rainfall. Take 

the median value (i.e., 
CR =64.6mm) as the dividing value for prior effective rainfall 

rE , and separate the rainfall 

sample data into two situations based on 
rE ≥

CR  and 
rE <

CR  for prior effective precipitation threshold 
CR . 

These represent continuous heavy rainfall processes (Type Ⅰ) and non-continuous heavy rainfall processes (Type 

Ⅱ). Construct the 𝐼 − 𝐷 relationship curve for each sample set (Figure 2). Since the same rainfall duration may 

have multiple average intensities, the average value of average rainfall intensities for landslide samples with the 

same rainfall duration is taken as the average rainfall intensity for that duration. The upper and lower profiles in 

Figure 2 represent the highest and lowest average rainfall intensities that could lead to a landslide for any rainfall 

duration in the area. As can be seen from the figure, as the duration of rainfall increases, the average rainfall 

intensity noticeably decreases. The rainfall duration for non-continuous heavy rainfall processes (Type Ⅱ) is 

concentrated between 5-20h, with an average rainfall intensity between 2-4mm/h. The rainfall duration for 

continuous heavy rainfall processes (Type Ⅰ) is concentrated between 10-30h, with the longest reaching up to 50h, 

and a slightly stronger average rainfall intensity concentrated between 2.5-5mm/h. 

 

  
Figure 2: I-D threshold curve and fitting equation 

a:TypeⅠ 
rE ≥64.6mm; b : TypeⅡ 

rE <64.6mm 

 

Based on the above I-D distribution relationship, establish the landslide occurrence probability formula: 

                𝑝
𝑖

= (𝐼𝑖𝐷 − 𝐼𝑚𝑖𝑛𝐷  )/(𝐼𝑚𝑎𝑥𝐷
− 𝐼𝑚𝑖𝑛𝐷 )                             (3) 

Where Pi is the landslide occurrence probability for the i-th forecast point, indicating the ratio of the forecasted 

average rainfall intensity 𝐼𝑖   when the rainfall duration for the 𝑖 −th forecast point is 𝐷𝑖   to the range of average 

rainfall intensities in the rainfall threshold model. According to the landslide occurrence probability pi, values 

≤10% are considered low risk, 15%-50% are medium risk, 50%-90% are high risk, and over 90% are extremely 

high risk. The meteorological disaster risk warning for landslides is divided into four grade intervals. 

During calculation, based on the actual measured rainfall before the forecast is issued, calculate the effective 

rainfall value. Determine the threshold model to be used (Type I or Type II) by comparing it with the boundary 

threshold. Then, in conjunction with early warning service requirements, input the grid rainfall forecast product 

(QPF) released daily/hourly for any future period into equation (3) to obtain the meteorological risk level forecast 

conclusion for landslides for any future period. 

Ⅳ. FORECAST VERIFICATION 

To verify the forecasting efficacy of the model, the TS score method was adopted. Using 31 landslide records 

from 2022 and another 31 rainfall events near the dates of those records where no landslides occurred (a total of 

62 data points) as verification samples. Landslide meteorological risk levels were calculated using the "Dual-
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parameter Method" from this study, the "Prior Rainfall Fitting Method" (QX/T487-2019)[21], and the "Current 

Rainfall Threshold Method". A comparative analysis was conducted against the results of these three methods 

and the empirical threshold method of the local environmental monitoring department (using daily rainfall 

intensities of 60mm and 120mm as the critical rainfall thresholds for landslides). It's evident that the "Dual-

parameter Method" had the highest TS score among the four forecasting models (Table 1), effectively reducing 

the high false alarm rates found in the "Prior Rainfall Fitting Method" and "Empirical Threshold Method". 

Compared to the "Current Rainfall Threshold Method", the "Dual-parameter Method" could to some extent reduce 

the likelihood of under-predictions. 

Table 1: Accuracy of landslide forecasting by various methods 

Evaluation 
Indicator 

 
 

Method 

Correct 

Forecasts 
Over-predictions 

Under-

predictions 
TS Score Hit Rate False alarmt rate 

Under-

prediction Rate 

Dual-parameter 

Method 
42 5 15 67.7% 73.7% 8.1% 24.2% 

Prior Rainfall 

Fitting Method 
31 31 0 50% 100% 50% 0 

Current Rainfall 

Threshold 

Method 

38 0 24 61% 61% 0 39% 

Geological 

Department's 

Empirical 

Threshold 

Method 

31 31 0 50% 100% 50% 0 

Ⅴ. CONCLUSION 

This research is based on the landslide records of the Wuzhou City Geological Environmental Monitoring 

Station and hourly rainfall data from meteorological automatic observation stations from 2016 to 

2022.Considering the impact of prior effective rainfall accumulation, a meteorological risk forecasting model 

suitable for this type of geological landslide was constructed using the current rainfall intensity (I) and duration 

(D) parameters. The computer-aided dual-parameter landslide prediction method proposed in this study has 

not only made significant progress in prediction accuracy but also adapts to the requirements of the big data 

era in terms of computational efficiency. The main conclusions are: 

 Landslides occurring in the weathered rock and soil regions of granite in the South China region are closely 

related to prior effective rainfall and current rainfall. The cumulative effect of rainfall over the 11 days preceding 

a landslide event has the greatest impact. The duration of the current rainfall process generally ranges from 1 to 

48 hours. The rainfall volume over a continuous 12-hour period contributes 78.52% to the daily rainfall volume, 

with 90% of cases having an average rainfall intensity between 1.2~27.7mm/h, 72% of cases with an average 

rainfall intensity <10mm/h, and only 13% of cases with an average rainfall intensity ≥20mm/h. 

In the verification analysis of 62 landslide event samples from 2022, compared to other forecasting methods, 

the dual-parameter landslide meteorological risk level forecasting model based on the threshold of prior effective 

rainfall had the highest TS score and the lowest false alarm rate. However, there were still cases of under-predicted 

landslides. In the future, it will be necessary to integrate local rainfall characteristics, geological properties, types 

of geological disasters, etc., to construct a more refined meteorological risk forecasting model that's better tailored 

to the local region. 

ACKNOWLEDGMENT 

Guangxi Key Research and Development Project (Guike AB21196041), Asia Cooperation Special Fund 

Project 

REFERENCES 

[1] FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on 

machine learning. The Chinese Journal of Geological Hazard and Control, 2021. DOI: 10.16031/j.cnki.issn.1003-

8035.2021.04-0001.  



J. Electrical Systems 20-2 (2024): 823-828 

828 

[2] Li Yumei, Yang Yin, Di Jingyue, et al. National Geological Disaster Meteorological Risk Fine-grained Grid Forecasting 

Method and Its Application. Meteorology, 2020, 46(10): 1310-1319. 

[3] Zhou Hongyi, Li Huixia. The influence of fissure development in weathered granite crust in South China on the erosion of 

gullies. Jiangsu Agricultural Science, 2014, 42(10): 352-354. 

[4] Li Hongwen. Study on Engineering Characteristics of Weathered Granite Soil. Sichuan Cement, 2018, No.263(07): 273-274. 

[5] Liu Liang. Discussion on Engineering Properties of Weathering Products of Coastal Granite in South China. Geotechnical 

World, 2003(10): 37-38. 

[6] Luo Jingyun, Yang Qiang, Gao Youlong. Brief analysis of the characteristics and causes of debris flows in the eastern part of 

Gansu and countermeasures for their control. Shanxi Architecture, 2009, 35(24): 127-128.6 

[7] Zhang Guohua, He Xuewen. Meteorological Early Warning Study of Geological Disasters in Ji'an County, Jiangxi Province. 

East China Geology, 2021, 42(04): 373-382. 

[8] Zhang Shaojie, Liu Dunlong, Wei Fangqiang. A Debris Flow Forecasting System for Sichuan Province Based on Watershed 

Soil-Water Coupling Mechanism. v1.0.2014. 

[9] Dong Huiqing, Tan Lingzhi, Zheng Fengqin, et al. Meteorological forecasting and early warning technology for geological 

disasters during flood season in Guangxi. Guangxi Meteorology, 2004(04): 21-24. 

[10] Zeng Peng, Liao Guolian, Mo Yuchun, et al. Design and Development of Guangxi Geological Disaster Business Platform. 

Meteorological Research and Application, 2014, 35(02): 57-59+126. 

[11] Liao Haiji, Lan Junkang, Huang Ximing. Application of the Analytic Hierarchy Process in Geological Disaster Meteorological 

Forecasting and Early Warning - Taking LingShan County, Guangxi as an Example. Journal of Guilin University of 

Technology, 2013(4): 634-639. 

[12] Liang Guojun. Meteorological Early Warning Zoning of Geological Disasters in Dahua Yao Autonomous County, Guangxi. 

Minerals and Geology, 2022, 36(2): 425-431. 

[13] Lü Da. Study on Meteorological Early Warning of Geological Disasters in Fanchang County, Anhui Province. Journal of 

Lanzhou Institute of Technology, 2016, 23(5): 74-78. 

[14] Wang Kun, Wan Chenlu, Ruan Dicheng, et al. Meteorological Geological Disaster Precipitation Threshold Analysis - Taking 

the Ruoergai Region as an Example. Science and Technology Information, 2022, 20(7): 103-105. 

[15] Yang Senlin, Mao Xianhou. Discussion on Major Meteorological Geological Disasters in Guizhou. Guizhou Meteorology, 

2012, 36(2): 7-10. 

[16] Li Minghua, Li Tianchi. Investigation Report on Rainstorm Landslides in Eastern Sichuan. Proceedings of the China-US-

Japan Conference on Mitigating Multiple Natural Disasters. Science Press, 1985. 

[17] Wen Zhixiong, Lan Junkang, Liang Yimin. Meteorological Forecasting and Early Warning of Collapses and Landslides in 

Longsheng County, Guangxi. Journal of Guilin University of Technology, 2018, 38(3): 464-468. 

[18] Liu Fanjun, Li Dengyou. Distance formula on the sphere and its application. Mathematics Teaching Research, 2013, 32(3): 

39-40,43. 

[19] Lu Weiping, Wang Jiandong, Sun Jingwen. Temporal and Spatial Distribution Characteristics of Short-Term Heavy 

Precipitation in Guangxi Based on Automatic Meteorological Observation Stations. Meteorological Research and Application, 

2022, 43(04): 91-97. 

[20] Caine N, 1980. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann, 62(1/2): 23-27. 

[21] National Committee for Standardization of Meteorological Disaster Prevention and Mitigation. Meteorological Risk Early 

Warning Grade of Rainstorm-Induced Geological Disasters QX/T487-2019[S]. Beijing: Meteorological Press. 2019:10. 

 


