
J. Electrical Systems 20-2 (2024): 770-776 

770 

1,*Yongwen Hu 

2Lixun Wang 

3Zejian Zhang 

 

A Feasible Flow-based Algorithm 
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Abstract: - Classic assignment problem with bottleneck is a fundamental combinatorial optimization problem with numerous practical 

applications in diverse domains. In order to comprehensively explore the classic assignment problem with bottleneck and to develop 

efficient algorithm, a feasible flow-based algorithm is proposed for optimizing classic assignment problem with bottleneck. The 

bottleneck constraints are addressed by updating the bottleneck of the problem, and a feasible-flow approach is leveraged to efficiently 

identify optimal solutions within the network framework associated with such problems. To assess the effectiveness of our proposed 

algorithm, a comprehensive set of numerical experiments is carried out across various instances of classic assignment problem with 

bottleneck. Our numerical results demonstrate the superior performance of our algorithm, particularly when applied to problems with 

smaller cost scales, making it particularly suitable for addressing medium-sized to smaller-scale problems. 
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I.  INTRODUCTION 

In the past several decades, the assignment problem (AP) has garnered theoretical and practical attention from 

numerous researchers and practitioners. The AP stands as a widely recognized combinatorial optimization problem, 

and researchers have extensively investigated various adaptations and variations of this problem. Among the 

variations of AP presented by researchers were ones to the bottleneck AP [1], the generalized AP, the semi-AP, the 

quadratic AP, and a variety of others. Also, there were some papers combining two or more of these basic variations 

[2-4]. 

The fundamental objective of the classic assignment problem (CAP) is to establish a bijective mapping between 

n agents and n jobs with the primary aim of minimizing the overall cost associated with these assignments. 

However, in real life, multiple jobs may be executed in parallel, and not only the total cost of assignments but also 

the duration of the jobs will be minimized. This paper concentrates on a multi-objective problem, which is 

presented as follows: 

𝑚𝑖𝑛𝑚𝑎𝑥𝑥𝑖𝑗=1⁡{𝑐𝑖𝑗}

𝑚𝑖𝑛 ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗
     (1) 

subject to the identical constraints and definitions as those in the CAP. The stated problem is a special version 

of bottleneck assignment problem (BAP), and many applications can be found in real life. For instance, in the 

context of an assembly line, each operator must be allocated to a workstation for task execution. Given that the 

cycle-time of the assembly line is determined by the slowest workstation, optimizing system productivity 

necessitates assigning each operator to a workstation with the shortest processing time, thereby minimizing the 

longest processing time. Another illustrative scenario involves the allocation of railway emergency crews to areas 

impacted by natural disasters. In such cases, swift and efficient allocation of resources can be critical in responding 

to emergency situations effectively. Further applications of the concept of bottleneck assignment can be identified 

in [5]. In fact, the problem has application in any AP situation where a minimax objective is appropriate. 

Ford and Fullkerson [6] originally discussed BAP. After that, a number of researchers studied BAP extensively 

and proposed several algorithms for solving BAP. Particularly, one stream of researchers seeks to transform the 

BAP into CAP, and the Hungarian method can be applied to solve it. Pferschy [7] presents a solution method for 

BAP. Page [8] demonstrated the procedure for transforming the BAP into an equivalent CAP. Bhatia [9] gave a 

recursive algorithm for BAP by solving a series of special CAP with the Hungarian method. However, this method 

can result in a large-scale of transformed assignment matrix even for a small BAP. Edmonds and Fulkerson [10] 

devised an algorithm for solving the general BAP by introducing dummy jobs or works. The threshold algorithm, 

as described in reference [11], employs an initial threshold cost and examines the possibility of creating an 
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assignment with allocation costs below this threshold. The process involves iteratively increasing the threshold 

until a valid assignment meeting the criteria is discovered. The final assignment represents the optimal solution to 

the BAP. In [12], introduces enhancements to the complexity of the threshold algorithm by incorporating a binary 

search pattern for threshold adjustment, contrasting with the gradual incremental approach. Michael [13] provided 

two methods for the sensitivity of BAP.  

Indeed, the CAP can be equally converted into a network flow problem. Derigs [14] presented an optimization 

method for BAP with a shortest augmenting path method. Hu [15] transformed GAP into a minimum cost flow 

problem and presented an algorithm with complementary slack condition. Recently, several exact algorithms [16-

18] have been developed for the GAP. However, the exact algorithms [16-18] are applicable only under specific 

assumptions and constraints. Moreover, particularly when dealing with large-scale Assignment Problems (AP), the 

majority of exact algorithms often fail to provide an optimal solution in a short amount of time. No known 

polynomial-time algorithm exists for exact solutions to the BAP, but there are several approximate algorithms 

available for obtaining near-optimal solutions in an acceptable CPU time. Many approximate algorithms [19-22] 

have been proposed for solving AP. 

This paper considers on a CAP with a bottleneck (CAP-B). As mentioned above, an optimal solution for CAP 

can be found by an algorithm based on network flow theory. 

The remainder of this research is structured as follows. Section 2 transforms the CAP-B into a network flow 

problem; Section 3 introduces a deterministic algorithm designed for CAP-B. Also, the convergence of the 

algorithm is given in this section; In Section 4, results of the numerical experiments are presented. Section 5 gives 

concluding remarks and discusses potential avenues for further research. 

II. NETWORK-FLOW MODEL FOR CLASSIC ASSIGNMENT PROBLEM WITH BOTTLENECK 

Let 𝑴 = {1,2, … , 𝑛} be the index set of 𝑛 agents, 𝑵 = {1,2, … , 𝑛} be the index set of 𝑛 jobs, and 𝑐𝑖𝑗  be the cost 

of assigning the 𝑗-th job to the 𝑖-th agent. By introducing binary variables 𝑥𝑖𝑗 ,with 

𝑥𝑖𝑗 = {
1     job  𝑗 is assigned to agent 𝑖,
0     otherwise, 

 

the GAP-B can be stated as 

 𝐶𝐴𝑃 − 𝐵
|

|
𝑠. 𝑡.

𝑚𝑖𝑛𝑖∈𝑴,𝑗∈𝑵𝑚𝑎𝑥𝑥𝑖𝑗=1{𝑐𝑖𝑗}

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑥𝑖𝑗 = 1, 𝑗 = 1,2, … , 𝑛𝑛
𝑖=1 ,

∑ 𝑥𝑖𝑗 = 1, 𝑖 = 1,2, … , 𝑛𝑛
𝑗=1 ,

𝑥𝑖𝑗 = 0⁡𝑜𝑟⁡1, 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … 𝑛.

⁡   (2) 

Clearly, CAP-B is a multi-objective problem, and a popular strategy that transforming multi-objective 

programming into singe-objective programming can be developed for solving it. Suppose the optimal bottleneck 

of CAP-B is 𝑐∗ = ⁡minmax{𝑐𝑖𝑗 ∣ 𝑥𝑖𝑗 = 1, 𝑖, 𝑗 = 1,2, … , 𝑛}. As 𝑐∗ must be an element in efficiency matrix of the 

problem, it follows that, if 𝑐∗  is given, CAP-B can be transformed into the following problem with a single 

objective. 

 𝐴
|

|
𝑠. 𝑡.

𝑚𝑖𝑛𝑧 = ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗
∑  𝑛
𝑖=1 𝑥𝑖𝑗 = 1, 𝑗 = 1,2, … , 𝑛,

∑  𝑛
𝑗=1 𝑥𝑖𝑗 = 1, 𝑖 = 1,2, … , 𝑛,

𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝑐∗, 𝑖, 𝑗 = 1,2, … , 𝑛,

𝑥𝑖𝑗 = 0 or 1, 𝑖, 𝑗 = 1,2, … , 𝑛.

⁡    (3) 

Clearly, there is at least one index 𝑖 ∈ 𝑀 and 𝑗 ∈ 𝑁 such that 𝑐𝑖𝑗 = 𝑐∗. And 𝑐𝑖𝑗  can be set to be a big number if 

𝑐𝑖𝑗 > 𝑐∗, ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁. Furthermore, 𝑐∗ can be updated with the minimum adjustment method without losing 

optimal solution. 

As problem A is a CAP, there are several algorithms for solving it. It is a widely recognized fact that the CAP 

can be optimized by equivalently transforming it into a network flow problem. 

A network flow model of classic assignment problem is given in Figure 1. 

Let 𝐺 = (𝑁′, 𝐴, 𝐶, 𝑈) be a directed network, and 𝑁′ = {𝑠} ∪ 𝑀 ∪ 𝑁 ∪ {𝑡}, 𝐴, 𝐶 and 𝑈 are the arc set, cost set 

and capacity set, respectively. In order to describe the constraints that each agent is required to be assigned to 

exactly one job, and conversely, every job is required to be assigned to exactly one agent., let 𝑢𝑖𝑗 = 1,⁡∀(𝑖, 𝑗) ∈

𝐴, ∀𝑢𝑖𝑗 ∈ 𝑈, and for a given 𝑐∗, 𝑐𝑖𝑗 ≤ 𝑐∗ and 𝑐𝑠𝑖 = 𝑐𝑗𝑡 = 0, ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁. Therefore, for a given 𝑐∗, an optimal 

http://respectively.in/
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solution for the assignment problem with bottleneck is equivalent to a solution of the network flow problem with 

a flow valued 𝑛, and its mathematical model can be presented as follows: 

 𝐿𝑃
|

|
𝑠. 𝑡.

𝑚𝑖𝑛 𝑧 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑥𝑠𝑖 = 𝑛,𝑛
𝑖=1

∑ −𝑥𝑗𝑡 = −𝑛,𝑛
𝑗=1

∑ 𝑥𝑖𝑗𝑗 − ∑ 𝑥𝑘𝑖𝑘 = 0, ∀𝑖 ∈ 𝑀⋃𝑁, 𝑖 ≠ 𝑠, 𝑡,

0 ≤ 𝑥𝑖𝑗 ≤ 1, ∀𝑖, 𝑗 ∈ 𝑀 ∪ 𝑈 ∪ {𝑠} ∪ {𝑡}.

⁡  (4) 

Hu et al. [23] presented a solution method for solving minimum cost flow problem, where the proposed 

algorithm identifies augmenting paths in the original network through node potential updates. The next section will 

give an algorithm by the network flow approach for CAP-B. 

s
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t    
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Figure 1: Minimum Cost Flow Model of the Minimum Time Limit Assignment Problem 

III. SOLUTION METHOD OF CLASSIC ASSIGNMENT PROBLEM WITH BOTTLENECK 

As showed in Figure 1, the modified network flow model exhibits a distinctive feature wherein the capacity of 

each arc is set to one. This specific characteristic allows for the development of a more efficient algorithm tailored 

to this network model in comparison to a more general network model. For a given 𝑐∗, problem A is a CAP with 𝑛 

agents. 

Clearly, the dual problem of (4) is as follows. 

 𝐷𝑃 |
|𝑠. 𝑡.

𝑚𝑎𝑥 𝜔 = 𝑘𝑝𝑠 − 𝑘𝑝𝑡 + ∑ uij𝑝ij(i,j)∈A

𝑝𝑖 − 𝑝𝑗 + 𝑝𝑖𝑗 ≤ 𝑐𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴

𝑝𝑖 ⁡𝑖𝑠⁡𝑓𝑟𝑒𝑒, ∀𝑖 ∈ 𝑀 ∪ 𝑁 ∪ {𝑠} ∪ {𝑡}

𝑝𝑖𝑗 ≤ 0, ∀(𝑖, 𝑗) ∈ 𝐴

⁡   (5) 

where 𝑝𝑖  and 𝑝𝑖𝑗  are the dual variable of LP. Furthermore, let 𝑝𝑖  denote the potential of node 𝑖 , while 𝑝𝑖𝑗  

corresponds to the potential associated with the arc⁡(𝑖, 𝑗) ∈ 𝐴. 

Next the optimality conditions of the minimum cost flow problem will be given. Let 𝑥𝑖𝑗  and 𝑝 = {𝑝𝑖 , 𝑝𝑖𝑗} be a 

feasible solution of LP and DP, respectively. According to strong duality, if 𝑥𝑖𝑗  and 𝑝 = {𝑝𝑖 , 𝑝𝑖𝑗} are optimal, the 

following are satisfied. 

 
𝑥𝑖𝑗 = 0, if 𝑝𝑖 − 𝑝𝑗 + 𝑝𝑖𝑗 < 𝑐𝑖𝑗 , ∀𝑖 ∈ 𝑁,

𝑥𝑖𝑗 = 𝑢𝑖𝑗 , if 𝑝𝑖 − 𝑝𝑗 > 𝑐𝑖𝑗 , ∀𝑖 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐴.
    (6) 

As 𝑝𝑖  is free ∀𝑖 ∈ 𝑁, let 𝑝𝑖𝑗 = min{0, 𝑐𝑖𝑗 + 𝑝𝑗 − 𝑝𝑖}, then 𝑝𝑖𝑗 ≤ 0 will be satisfied. Thus, the conditions (6) 

can be stated equally as follows. 

 
𝑥𝑖𝑗 = 0, if 𝑝𝑖 − 𝑝𝑗 < 𝑐𝑖𝑗 , ∀𝑖 ∈ 𝑵

𝑥𝑖𝑗 = 𝑢𝑖𝑗 , if 𝑝𝑖 − 𝑝𝑗 > 𝑐𝑖𝑗 , ∀𝑖 ∈ 𝑵, (𝑖, 𝑗) ∈ 𝑨.
   (7) 

Theorem 1. Let 𝑥𝑖𝑗  be a feasible solution of 𝑀𝐶𝐹, then 𝑥𝑖𝑗  is optimal if and only if the following conditions 

hold. 

 {
𝑝𝑖 − 𝑝𝑗 < 𝑐𝑖𝑗 ⇒ 𝑥𝑖𝑗 = 0,

𝑝𝑖 − 𝑝𝑗 > 𝑐𝑖𝑗 ⇒ 𝑥𝑖𝑗 = 𝑢𝑖𝑗 .
    (8) 

For any arc (𝑖, 𝑗) ∈ 𝐴 is defined as an admissible arc if it satisfies the condition 𝑝𝑖 − 𝑝𝑗 = 𝑐𝑖𝑗. And a network 

is defined admissible network if each arc contained within it qualifies as an admissible arc. Obviously, a solution 

𝑥𝑖𝑗 = 0,∀(𝑖, 𝑗) ∈ 𝐴 is optimal with a total flow value of 0. The proposed algorithm commences by initiating the 

transmission of 0 units of flow from 𝑠 to 𝑡. Throughout the iterations, the algorithm can identify at least one 
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augmenting path by updating node potentials within a finite number of iterations, while satisfying the condition 

(8). Hence, flow augmentation is possible when the current flow amount is not at its maximum capacity. 

Let 𝜇+  represent the forward arc set and 𝜇−  represent the backward arc set on an augmenting path 𝜇. An 

algorithm, according to duality theory, for solving CAP corresponding the network 𝐺′ = (𝑁′, 𝐴, 𝐶, 𝑈) is described 

as Algorithm 1, where 𝑅 is an admissible network. 

Algorithm 1 Algorithm for solving CAP with duality theory:  

Initial settings: 𝑝𝑖 = 0, ∀𝑖 ∈ 𝑵′, 𝑥𝑖𝑗 = 0, ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑺 = {𝑠} ∪ 𝑴, 𝒔‾ = 𝑵′ ∖ 𝑺. Label source node (0,1).  

while ∑𝑖=1
𝑛  𝑥𝑠𝑖 < 𝑛, 𝑖 ∈ 𝑴 do 

Remove all labels associated node 𝑖, ∀𝑖 ∈ 𝑴 ∪ 𝑵⋃{𝑡}.  

while 𝑡 ∉ 𝑺 do 

𝑝𝑖 = 𝑝𝑖 + 𝜃, ∀𝑖 ∈ 𝑺, where 𝜃 = min𝑘∈𝑺∩𝑴,𝑞∈𝑺̅∩𝑵  𝑐𝑘𝑞 − 𝑝𝑘 + 𝑝𝑞 . 

if 𝑝𝑖 − 𝑝𝑗 = 𝑐𝑖𝑗 , ∀𝑖 ∈ 𝑺, 𝑗 ∈ 𝑺̅ then 

  (𝑖, 𝑗) ∈ 𝑅 

end if 

if (𝑖, 𝑗) ∈ 𝑅, 𝑥𝑖𝑗 = 0, ∀𝑖 ∈ 𝑺, 𝑗 ∈ 𝑺̅ then 

Node 𝑗 is assigned the label (𝑖, 1), 𝑺 = 𝑺⋃{𝑗}, 𝑺̅ = 𝑺̅ ∖ {𝑗}. 

end if 

if (𝑗, 𝑖) ∈ 𝑅, 𝑥𝑗𝑖 = 1, ∀𝑖 ∈ 𝑺, 𝑗 ∈ 𝑺̅ then 

  Node 𝑗 is labeled with (−𝑖, 1), 𝑺 = 𝑺⋃{𝑗}, 𝑺̅ = 𝑺̅ ∖ {𝑗}.  

end if 

end while 

𝑥𝑖𝑗 = {

𝑥𝑖𝑗 + 1,     (𝑖, 𝑗) ∈ 𝜇+,

𝑥𝑖𝑗 − 1,     (𝑖, 𝑗) ∈ 𝜇−,

𝑥𝑖𝑗 .    

 

end while 

Therefore, according to the above analysis, an optimal solution of CAP-B will be found if 𝑐∗ is given. And 𝑐∗ 

can be updated as follows without discarding optimal solution. 

Let 

 𝑐𝑖′𝑗 = 𝑚𝑖𝑛{𝑐𝑖𝑗|𝑖 = 𝑗′, 𝑗 = 1,2, … , 𝑛}, 𝑖′ = 1,2, … , 𝑛,    (9) 

 𝑐𝑖𝑗′ = 𝑚𝑖𝑛{𝑐𝑖𝑗|𝑗 = 𝑗′, 𝑖 = 1,2, … , 𝑛}, 𝑗′ = 1,2, … , 𝑛,    (10) 

 𝑇1 = 𝑚𝑎𝑥{𝑐𝑖′𝑗 ∈ 𝐶1, 𝑐𝑖𝑗′ ∈ 𝐶2}.     (11) 

Now consider a set 𝐶𝑟 = {𝑐𝑖′𝑗 , 𝑖
′ = 1,2, … , 𝑛}, ∥∥𝐶𝑟∥∥ = 𝑛, and ∀𝑐𝑖1′𝑗 , 𝑐𝑖2′𝑗 ∈ 𝐶𝑟 , 𝑖1

′ ≠ 𝑖2
′ . Similarly, let 𝐶𝑐 =

{𝑐𝑖𝑗′ , 𝑗
′ = 1,2, … , 𝑛}, ∥∥𝐶𝑐∥∥ = 𝑛, and ∀𝑐𝑖𝑗1′ , 𝑐𝑖𝑗2′ ∈ 𝐶𝑐 , 𝑗1

′ ≠ 𝑗2
′ . Evidently, it is possible to find an optimal solution, 

denoted as 𝑐1
∗  and 𝑥1

∗ , if ∀𝑐𝑖1𝑗1 , 𝑐𝑖2𝑗2 ∈ 𝐶1 , and 𝑗1 ≠ 𝑗2, ∀𝑖1, 𝑗1, 𝑖2, 𝑗2 = 1,2, … , 𝑛. Furthermore,⁡𝑐1⁡
∗ = max{𝑐𝑖′𝑗 ∣

𝑐𝑖′𝑗 ∈ 𝐶1},and 𝑥𝑖′𝑗
∗ = 1 if 𝑐𝑖′𝑗 ∈ 𝐶𝑟; 𝑥𝑖′𝑗

∗ = 0, if 𝑐𝑖′𝑗 ∉ 𝐶𝑟 ; Similarly, if the relation ∀𝑐𝑖3𝑗3 , 𝑐𝑖4𝑗4 ∈ 𝐶𝑐 , and 𝑗3 ≠

𝑗4, ∀𝑖3, 𝑗3, 𝑖4, 𝑗4 = 1,2, … , 𝑛  hold, an optimal solution, an optimal solution 𝑐2
∗  and 𝑥2

∗  will be given, and 𝑐2⁡
∗ =

max{𝑐𝑖𝑗′ ∣ 𝑐𝑖𝑗′ ∈ 𝐶𝑐}  and xij′
∗ = 1 , if 𝑐𝑖𝑗′ ∈ 𝐶2; 𝑥𝑖𝑗′ ⁡

∗ = 0  if 𝑐𝑖𝑗′ ∉ 𝐶2 . If the minimum element of each 

row(column) does not belong to a different column(row), which indicates that 𝑇1 defined in (11) is not an optimal 

solution of problem (2). 𝑇1 will be updated by the following rules without discarding optimal solution. 

 𝑇1 = 𝑇1 +𝑚𝑖𝑛{𝑐𝑖𝑗 − 𝑇1|𝑐𝑖𝑗 > 𝑇1, 𝑖, 𝑗 = 1,2, … , 𝑛}    (12) 

Obviously, after the updating process, 𝑇1 is an element in efficiency matrix [𝐶𝑖𝑗]. Therefore, a new network 

corresponding to 𝑇1 will be created, and let 

 𝑐𝑖𝑗 = {
𝑀, 𝑐𝑖𝑗 > 𝑇1
𝑐𝑖𝑗 , 𝑐𝑖𝑗 ≤ 𝑇1

     (13) 

where 𝑀 is a big positive number. An algorithm for solving problem (2) can be described as follows. 

Algorithm 2 Algorithm for solving CAP-B: 

Calculating 𝑇1 by the rule (9) to (11) and creating a network 𝐺 = (𝑁, 𝐴, 𝐶, 𝑈), where 𝐶 is defined as (13). Let 

𝑓 be the maximal flow of the created network problem solved by Algorithm (1)  

while 𝑓 < 𝑛 do 

Update 𝑇1 according to (12); 

Update 𝑐𝑖𝑗 ∈ 𝐶 by the rule of (13) and get a new network denoted as 𝐺. 
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Solve network 𝐺 with Algorithm (1) and get a maximal flow 𝑓.  

end while 

Theorem 2 Algorithm 2 will conclude within a finite number of iterations. 

𝑃𝑟𝑜𝑜𝑓. Clearly, the sink node t cannot be labeled in association with node 𝑗 if 𝑥𝑗𝑡 = 1, ∀𝑗 ∈ 𝑵. Otherwise, as 

𝑐𝑠𝑖 = 𝑐𝑗𝑡 = 0, ∀𝑖 ∈ 𝑴, 𝑗 ∈ 𝑵, node 𝑡 will receive a label while node 𝑗 is labeled. This implies that an augmenting 

path from 𝑠 to 𝑡 can be obtained, allowing for an additional unit of flow to be transmitted from 𝑠 to 𝑡 during the 

first iteration. Furthermore, node 𝑖 can be assigned a label if node 𝑗 is labeled and 𝑥𝑖𝑗 = 1. Hence, an augmenting 

path will be identified after updating node potentials in a finite number of iterations. Consequently, at least one 

additional unit of flow is dispatched from 𝑠 to 𝑡. For CAP-B with n agnets, the total number of iterations is 
𝑛2+𝑛

2
, 

which implies the Theorem 2. 

The following section will present a series of numerical experiments to evaluate the performance of Algorithm 

2 as proposed. 

IV. NUMERICAL EXPERIMENTS 

This section presents a series of numerical experiments to evaluate the algorithm's effectiveness, efficiency, 

and behavior under various conditions. Our algorithm was implemented in MATLAB® R2016b, running on 

computer equipped with an Intel® Core i5-7300HQ CPU @ 2.50GHz, 8GB of RAM.  

The proposed algorithm has been effectively evaluated with varying input data, and 𝑐𝑖𝑗  follows a uniform 

distribution within the intervals [1, 102], [1, 104]. The numerical experiments were conducted on networks of 

varying scales, where 𝑛 ranged from 10 to 300). For a given 𝑛, The average CPU times were computed across 20 

problem instances. The performance of the proposed algorithm is compared with a deterministic algorithm 

(turnpike approach proposed by Kuo [24]) and a meta-heuristic algorithm. For simplicity, the proposed algorithm 

is referred to as A. A meta-heuristic algorithm designed by Woodcock and Wilson [19] and a deterministic method 

by Kuo [24] for assignment problem are called B and C. The CPU time for each algorithm is given in Table 1.  

Table 1: The Computational Performance of Randomly Generated CAP-B Instances, Varying in N and 𝑐𝑖𝑗  

Intervals, is Evaluated in Terms of Execution Time (Measured in Seconds) 

Number of 

agents 

Average number. of 

arcs 

Average CPU time Average CPU time 

𝑐 ∈ [0,100] 𝑐 ∈ [0,10000] 
A B C A B C 

10 91 0.04 6.10 0.05 0.04 6.11 0.08 

50 2243 0.47 9.59 0.75 0.58 10.49 0.83 

100 9013 4.62 14.23 5.62 6.71 16.24 6.72 

150 20239 24.86 28.56 13.48 40.53 51.57 18.09 

200 36024 107.00 136.37 62.76 156.00 212.42 80.86 

300 81021 610.00 849.31 157.39 1027.76 1245.94 201.76 

The results show that our algorithm outperformed algorithm C by achieving an average CPU time reduction of 

29% across problem instances when 𝑛 ≤ 100. Although our algorithm requires more CPU time compared to the 

bees algorithm when 𝑛 > 100, our algorithm can find an exact optimal solution, while the bees algorithm finds a 

near-optimal solution of CAP-B. 

In addition, our algorithm runs approximately 1.14-150.30 times faster than algorithm B across all problem 

instances. However, our algorithm will take more CPU time when 𝑛 > 100 (compared with algorithm C) and 𝑛 >

150 (compared with algorithm B). For a smaller range of 𝑐𝑖𝑗  (e.g. 𝑐𝑖𝑗 ∈ [0, 102]), our algorithm has a high 

probability to get more admissible arcs after updating the nodes potentials, which will accelerate the process for 

finding a flow valued 𝑛. On the contrast, our algorithm finds an optimal solution in more iterations for a larger 

range of 𝑐𝑖𝑗  (e.g. 𝑐𝑖𝑗 ∈ [0, 104]). Therefore, for the same number of agents, obtaining an optimal solution will 

require more CPU time when dealing with a larger range of 𝑐𝑖𝑗 . And for a larger range of 𝑐𝑖𝑗 , as the problem size 

increases, algorithm A experiences a greater increase in CPU time. 

V. CONCLUTION AND FURTHER WORK 

This study examines the CAP-B which is a variant of the CAP. An algorithm is proposed for solving the CAP-

B. Our exact algorithm formulates the problem as a network model with a distinctive structure and solves it by 

iteratively updating the 'bottleneck' and node potentials.  
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Numerical experiments conclusively illustrate that the proposed algorithm can efficiently find optimal 

solutions, especially for a small-scale assignment problem with bottleneck. Further, the numerical experiments 

reveal that the algorithm's performance is sensitive to the range of 𝑐𝑖𝑗 . For smaller range of 𝑐𝑖𝑗 , the algorithm 

performs well, but its performance degrades rapidly as the range of 𝑐𝑖𝑗  becomes large. 

While the proposed algorithm successfully identifies optimal solutions for the CAP-B, several potential 

directions for future research can be explored. Firstly, it is meaningful to investigate the performance of our 

algorithm on more complex and realistic instances of the problem, such as those with uncertain or dynamic demand 

and capacity constraints. This would require the development of more sophisticated optimization models and 

algorithms that can adapt to changing conditions over time. Another interesting direction for future work would be 

to explore machine learning and data-driven techniques for solving CAP-B. 
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