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Abstract: - The engine is the core component of the power system, and the health status of the components of the engine is very
important for the normal operation of the power system. Most of the exist-ing fault diagnosis methods diagnose the engine fault type
without further analysis of the sever-ity of the fault. Different fault severity requires different maintenance measures. Therefore, this
paper proposes a cascading fault diagnosis model based on Gated Recurrent Unit (GRU) to di-agnose the fault type and the severity
of the corresponding fault type.Firstly, the effective fea-tures are extracted from the vibration signals, and then the features are input
into the GRU for fault type diagnosis to obtain the sub-fault diagnosis model. After training, one fault type diag-nosis model and
four fault severity diagnosis models are obtained. Then the obtained model is cascaded to obtain the total fault diagnosis network.
Fault type diagnosis is located at the first level, and four fault severity diagnosis is located at the second level. The effectiveness of
the proposed method is verified by experimental data.
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L. INTRODUCTION

Engine is an important core component of power equipment such as internal combustion engine and
compressor. Timely detection of failure types and corresponding fault severity and processing are of great
significance to the normal operation of equipment, increase life safety and reduce property losses.

With the development of science and technology in recent years, artificial intelligence has made great
progress. Since artificial intelligence methods do not require much professional knowledge and can achieve good
diagnostic accuracy through training models, Artificial intelligence methods such as Support Vector Machine
(SVM), Convolutional Neural Network (CNN), LSTM, Long short-term Memory (DAE), Denoising autoencoder
(DAE) and Deep Belief Network (DBN) are widely used in fault diagnosis.

Shang[1] used signal processing methods empirical Mode decomposition (EMD) and Singular Value
decomposition (SVD) for feature selection. Then the selected features were sent to SVM for classification and
the classification accuracy reached 93.0%. Because the features of SVM need to be designed and extracted
manually, the difficulty of fault diagnosis is increased and the features to be extracted are not flexible enough.
CNN has attracted more attention from researchers due to its powerful feature extraction ability. Hu[2] proposed
to input the original signals directly into CNN for feature extraction, and then input the extracted features directly
into SVM for fault diagnosis. Ali Dibaj[3] uses fine-tuning Variational Mode Decomposition (VMD) and Hilbert
Huang Transform (HHT) to extract time-frequency features and send them into CNN as input for fault detection.
By using this method, complex fault detection of different faults with different severity is obtained. He[4]
completed the fault diagnosis of bearings by using CORAL alignment and 1D-CNN for transfer learning. Qin[5]
uses manual time domain features, original vibration signals and time-frequency domain features to input 1D-
CNN for fault diagnosis, which is resistant to strong environmental noise and changes in operating conditions
and improves diagnostic stability. DBN as a hotspot network of deep learning is also applied to fault diagnosis.
Feng[6] made use of the combined complexity entropy of single signal entropy and DBN for fault diagnosis and
achieved good results.However, most of the above methods only consider the spatial relationship of data but
ignore the temporal relationship. The temporal relationship of mechanical equipment signal data is quite
important for fault diagnosis. Therefore, it has a Recurrent Neural Network (RNN) that can reflect the temporal
relationship, which plays a very important role in improving the accuracy of fault diagnosis. Li[7] diagnosed arc
faults by using RNN, rapid continuous detection and probability-based classification results and achieved good
diagnosis results. However, due to the RNN length dependence problems disappear and gradient, LSTM and
GRU helped have been proposed to alleviate these problems. Zhao[8] used LSTM to complete the fault diagnosis
of additive manufacturing equipment. Han[9] combined VAE and LSTM to form the deformation variational
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autoencoder and conducted fault diagnosis by reconstruction error. Hao[10] used CNN and LSTM successively
to extract spatial and temporal features to complete rolling bearing fault diagnosis. Qiao[11] extracted time-
domain and time-frequency domain features from the original data set as inputs and sent them to CNN and
LSTM to extract spatial and temporal features respectively for fault diagnosis and achieved good results. Musab
ElDali[12] derived corresponding measurements using GNN (Growing Recurrent Neural Networks) and
VarLSTM (Variable Sequence Long and short-term memory Neural network). The failure probability is obtained
by comparing the derived and actual measured values. Compared with LSTM, GRU can alleviate the problems of
gradient vanishing and length dependence of RNN and has higher computational efficiency, so it is widely used
in fault diagnosis. Wang[13] used BI-GRU (bi-GRU) to complete the fault diagnosis of high voltage DIRECT
current (MMC-HVDC) system of modular multilevel converter. Liu[14] first processed the original signal with
short-time Fourier transform to obtain the time-frequency features, and then sent the time-frequency features into
one-dimensional convolutional network and GRU successively for bearing fault diagnosis. Zhang[15] used CNN
and GRU to extract time and space features respectively for fault diagnosis. Yang[16]first extracted time-
frequency domain features of signals using wavelet transform, and then sent them as input to CNN and GRU for
turnout fault diagnosis.

Most of the above methods are fault diagnosis methods without further classification of fault severity. These
classification methods are not conducive to taking reasonable maintenance measures. Some scholars also adopted
some methods to analyze the severity of faults. Xiao[17] used wavelet transform and curve fitting to obtain the

warning value and alarm value, and judged the fault degree based on the fault indication value obtained by fitting.

This method is highly dependent on the selection of wavelet function and requires manual determination of
threshold value, and highly dependent on expert knowledge and experience. Pan[18] first carried out feature
selection and dimensionality reduction, and then sent the selected features into the monotonic decision tree for
fault severity diagnosis, with an accuracy of 93.58%.Jha[19]completed fault severity diagnosis of rolling bearings
in two stages by using multi-classification support vector machine. Machine learning methods such as SVM can
only extract shallow features and cannot well mine data information, and the generalization ability of the model
is poor in the face of a large amount of data. Almounajjed[20] completed the fault severity diagnosis of short
circuit between stator locks of induction motor by using mathematical model. Hang[21] completed the detection
of fault severity of synchronous motor high-resistance wiring by establishing mathematical model. Taha[22]
combined dissolved gas analysis and neural pattern recognition to complete the fault severity diagnosis of power
transformers and achieved a diagnosis accuracy of 92.8%.Model-based fault severity diagnosis methods are
difficult to implement in many cases because of the need for professional knowledge and rich experience in
modeling, and the generalization ability of model-based methods is generally weak. Yang[23] used integrated
learning to complete fault severity diagnosis of rolling bearings, with training accuracy of 98.57%, verification
accuracy of 100%, and test accuracy of 96.51%. Gai[24] used DBN to complete the fault severity diagnosis of
rolling bearings, with an average detection accuracy of 96%. The fault severity analysis of the above methods has
a small number of fault severity types and is not good at solving complex problems. Sun[25] completed the
diagnosis of six fault types and their corresponding four fault severity levels by using multi-attentional network
combined with deep learning. However, the proposed method has high requirements on input as well as
environmental variables and control variables, and these data requirements cannot be realized in many practical
situations. Ali Dibaj[3] used VMD and CNN to complete the fault severity diagnosis of bearings and gears, but
this method requires setting VMD parameters and selecting thresholds. Whether these parameters are reasonable
or not has a great influence on the fault diagnosis results, which can only be obtained by further analysis of the
results obtained from the network. Many machine learning methods (such as SVM, etc.) can only mine shallow
features and their generalization ability decreases when the amount of data increases. In this paper, the RNN
series network with strong capability for processing temporal data is used. Since GRU and LSTM can alleviate
the gradient vanishing and length-dependent problems of RNN and have good mining capability for temporal
data. Moreover, GRU has fewer network parameters than LSTM, which can greatly increase the computing
efficiency. Therefore, GRU is selected as the network. Many fault severity diagnoses require that the input data
content is not easy to get and the diagnosis results need to set the threshold value manually. In this paper, an
intelligent diagnosis model which only needs a single vibration signal cascade network is proposed to analyze the
engine faults and their severity. A two-level network is set up. The first-level network is used to diagnose the
fault type, and the second-level different network model is used to diagnose the fault severity of the
corresponding fault type. In this paper, the original data were firstly obtained through setting experiment and data
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collection, and then the features were selected by using the double Pearson coefficient[26] and sent to the cascade
network for fault type and fault severity diagnosis.

The structure of this paper is as follows. The second chapter introduces the principle, the third chapter
describes the data set and fault methods, the fourth chapter describes the experimental results, and the fifth
chapter summarizes.

II.  MATERIALS AND METHODS

The signal type used in the experiment in this paper is time domain signal, and the temporal sequence
relationship between signal points plays an extremely important role in fault diagnosis. Therefore, this paper
chooses the recurrent neural network with strong processing capability of temporal sequence data as the selected
network for fault diagnosis. The recurrent neural network is divided into RNN, LSTM and GRU. RNN has the
simplest structure but has the problem of gradient vanishing, while LSTM and GRU are its variants, alleviating
the problem of gradient vanishing to varying degrees. Compared with GRU, LSTM has more parameters and
lower computational efficiency. In this paper, GRU is selected as the network to almost achieve the same
accuracy as LSTM, with fewer parameters and higher computational efficiency.

A.  Gated Recurrent Unit (GRU)

RNN is a neural network used to process sequential data, however, it has limitations in that there is gradient
vanishing during back propagation and the traditional RNN has only short term memory but not for problems
with long term memory. Therefore, a variant of it, GRU, is chosen to be used in the paper, as shown in Figure 1
where GRU is proposed to add gates to the network to overcome the limitations in RNN.
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Figure 1.The GRU structure

Figure 1 shows the internal expansion structure of GRU. ht-1 represents the hidden state of the previous
moment, which is historical information, ﬁtrepresents the candidate hidden state at the current moment, ht
represents the hidden state at the current moment, xt represents the input at the current moment, rt represents the
reset gate, and zt represents the update gate. The value range of rt and zt are both [0, 1]. The value of rt represents
the degree to which historical information is introduced into the candidate hidden state ht in the calculation
process of the current moment. If the value of rt is close to 0, it means that historical information is completely
ignored. A larger value of zt indicates that the information at the current moment uses more historical
information. The specific calculation formula is shown in (1) :

r=c(W [x,,h_]+b,) (1)

>

Where xt is the input at time t, Wr is the weight of rt, br is the bias of the reset gate rt, [xt, ht-1] is the
concatenate of two vectors, and o is sigmoid function. The update gate zt is used to control the proportion of
historical information used during calculations. Similar to reset gate rt, the greater the value of the update gate,
the greater the historical information of the loop block used. The calculation formula is shown in Equation (2) :

z,=o(W [x,,h_]+b,) B

Where Wz is the weight of zt, and bz is the bias of the update gate zt.
The calculation formula of hidden candidate state ht is shown in Equation (3) :
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}Nzt = tanh(W;7 [xt, (rt “h,_, )]+ bﬁ) (3)

>

Where Wh is the weight of it and bh is the offset of hidden candidate state ht. is for the vector dot product.
The calculation formula of the hidden state ht at the current moment is shown in Equation (4) :

ht:(l_zt)'ht—l_i_zt'i{t’ 4)

B.  Pearson correlation coefficient

Pearson correlation coefficient is widely used to measure the degree of correlation between two variables.
The greater the absolute value of the correlation coefficient, the stronger the correlation: the closer the correlation
coefficient is to 1 or -1, the stronger the correlation; the closer the correlation coefficient is to 0, the weaker the
correlation. In this paper, Pearson correlation coefficient is used to select features for fault diagnosis. Assuming
that the data of two time series data segments A and B are A=(al, a2, a3...... an ), B=(bl, b2, b3...... bn), and n
represent the length of data segments, Pearson correlation coefficient pA, B between the two sets of data can be
calculated as formula (5) :

_ Cov (A’B) _ E[(A - ,UA)(B - ,UB)]
Pap = = )

O 405 O 40 p

>

oA, oB, pA and puB are the mean and variance of A and B, respectively.

C. Feature extraction and data enhancement

The variation coefficient of cylinder head vibration signal was selected as the selected feature by using the
double Pearson coefficient. Then, in order to prevent over-fitting due to the small amount of data, the variation
coefficient was enhanced by using the sliding window method. The sliding window step was selected as 4, and

the window length was selected as 128.

D.  The diagnosis process

GRU is used as the network of choice because it not only mines the temporal features in the data, but also
alleviates the gradient vanishing and length-dependent problems of RNN, and also has fewer parameters and
higher computational efficiency than LSTM. The structure of the network model used in the experiment is shown

in Figure 2.
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Figure 2. Network diagnosis model

The model training steps are as follows:

Step 1: The extracted features are divided into training set, validation set and test set, and then the training set
and test set are fed into the network as input for model training

Step 2: Validation of the trained model using the test set

Step 3: Use the above steps to train the fault type diagnosis and fault severity diagnosis models to obtain a
first-level fault type diagnosis model and four second-level fault severity diagnosis models
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Step 4: Cascade the fault diagnosis model trained in the above steps. The fault type diagnostic model is at the
first level, and the second level is the fault severity model
The Overall cascade model is shown in Figure 3.
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Figure 3.The Overall cascade model

III. EXPERIMENTAL VERIFICATION AND RESULT ANALYSIS

A.  Experimental platform construction and data collection

In order to verify the effectiveness of the proposed method, signals collected by the fault simulation test
bench are used for fault diagnosis. The fault simulation test bench for high-speed machine is composed of diesel
engine, drive shaft, DC motor, console and related accessories, and its schematic diagram is shown in Figure 4.

cylinder pressure sensor cylinder head surface vibration sensor

fyselage surface vibration sensor

Trailing motor
fusejage bottom vibration sensor

Photoelectric
encoder : The shaft

The diesel
engine A

—_]

bearing

Figure 4. Schematic diagram of the failure simulation test bench

A certain type of diesel engine was selected for the test, using ECU and electronic control high pressure
common rail technology, four-stroke 6-cylinder, water-cooled, in-line, dry cylinder liner type.

The signals measured in the test include cylinder head surface vibration signal, fuselage surface vibration
signal, fuselage bottom vibration signal and cylinder pressure signal. Wherein, the cylinder pressure sensor is
installed in the position of cylinder no. 6. In order to make the measured vibration signal as much as possible to
reflect the cylinder pressure excitation, reduce the interference of other factors, the vibration acceleration sensor
is installed above the cylinder head to measure the vibration signal, and the fuselage vibration signal measuring
point is set in the middle of the fuselage surface.

The experimental data set is described in Table 1.
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Table 1.The experimental data set

Fault Type Label Fault Type wear loss Fault severity label
Omm 1-1
1 Exhaust valve wear 0.4mm 1-2
0.7mm 1-3
0.2mm 2-1
. 0.4mm 2-2
2 Cylinder wear 0.6mm 23
0.8mm 2-4
1.0mm 3-1
3 Piston ring wear 2.0mm 3-2
3.0mm 3-3
Omm 4-1
4 Intake valve wear 0.5mm 4-2
0.8mm 4-3

B.  Experiments and Results discuss

The variation coefficient of cylinder head vibration signal is selected by using Pearson correlation coefficient.
After that, the sliding window method was used for data enhancement. After that, 80% of the data was selected as
the training set, 20% as the verification set, and the data in the middle of the sliding step of the sliding window
method was used as the test set.

The training set and verification set are sent to the neural network for training. After training, five models
were obtained for fault type detection and fault severity detection of four fault types respectively. Then, the test
set was used to test the trained model to verify its generalization ability. In order to prevent the interference of
random factors, five different data sequence experiments were carried out for different models.

1) Parameters of cascade network model

The first-level fault type diagnosis model selects GRU as the selection network, in which three layers of GRU
are used for advanced feature extraction. The number of hidden elements in the first layer is 128, and the number
of hidden elements in the next two layers is 64 and 32 respectively. The output of the fully connected layer is
(4,1). The dropout rate is 0.2, the Adam optimizer is used in the optimizer, and the cross entropy loss function is
used in the loss function.

Adam optimization algorithm designs independent adaptive learning rates for different parameters by
calculating the first and second order estimates of gradients.

First, the attenuation average of the first-order moment estimator mt and the second-order moment estimator
vt are calculated by formulas (6) and (7).

mt:ﬂlxmt—1+(l_ﬁl)xgt’ 6)
\Z :ﬂzxvt—l +(1_182)th2’ (7

1=0.9 is the exponential decay rate of the first-order moment estimation, $2=0.999 is the exponential decay
rate of the second-order moment estimation, and gt is the gradient. In the second step, the deviation is corrected.
Through calculating the deviation, the first-order moment estimation and the second-order moment estimation are
corrected. The correction formulas are shown in (8) and (9).

i, =
- v
. v,
7= ©)

Parameter updates are shown in (10):
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axm,
W =W, - (10)
AP

Wt, Wt+1 is the model parameter vector at time t and time t +1, o is the learning rate, and £ =10-8 prevents
the denominator from being 0.

Cross entropy loss function:

The cross-entropy loss function can be shown in Formula (11).

L(f,7)=—2f1n7 (11)

fand T are the actual labels' one-hot codes and predicted probabilities, respectively.

The fault severity diagnosis model of exhaust valve, piston ring and intake valve also uses GRU as the
selection network, in which three layers of GRU are used for advanced feature extraction. The number of hidden
elements in the first layer is 128, and the number of hidden elements in the next two layers is 64 and 32
respectively, and the dropout rate is 0.2. The Adam optimizer is used in the optimizer. The cross entropy loss
function is used in the loss function. Since the severity of these three kinds of faults can be divided into three
kinds, the output shape of the full connection layer is (3,1).

According to the analysis of the experimental results, when the dropout rate is 0.5, the cylinder fault severity
diagnosis model has the highest accuracy, and the dropout rate of the cylinder fault severity diagnosis model is
0.5. Meanwhile, since there are four kinds of cylinder fault severity, the output shape of the full connection layer
is (4,1).

Table 2. Fault Type Diagnosis Network structure parameters

Structure Input Ouput Hidden elements The activation function

(128, 1) (128, 1)

(128, 1) (128, 128) 128 Tanh

(128, 128) (128, 128)

(128, 128) (128, 64) 64 Tanh

(128, 64) (128, 64)

(128, 64) (128, 32) 32 Tanh
(16, 1) 4,1 Softmax

Then, the weight and bias parameters of each model are obtained through corresponding data training. Fault
Type Diagnosis Network structure parameters are shown in Table 2.

The cascade model is used to simplify the problems. The fault type diagnosis model is used to diagnose the
four fault types. After the fault type diagnosis is completed, the fault severity diagnosis model is selected to
diagnose the corresponding fault severity. There are four fault severity diagnosis models, which are used to
diagnose different wear degrees of piston ring, intake valve, exhaust valve and cylinder respectively.

2) Fault type diagnosis

The TSNE dimension reduction representation of the test set confusion matrix and network extracted features
of a random experiment for fault type diagnosis is shown in Figure 5. It can be seen from the figure that the
diagnosis results of the model for the test set data that did not participate in the training model are all correct,
which shows that the model has good generalization ability. The training accuracy of the five random
experiments reached 100%, and there were two misdiagnosis cases in each experiment, with an average test
accuracy of 99.99%. The figure shows the T-SNE dimensional-reduction representation of the 32-dimensional
features of the first full-connection layer of the fault type diagnosis model of the cascading model. Since fault
diagnosis is a data set containing 13 kinds of fault severity data, it is difficult to classify the data. It can be seen
from the figure that although there is a class of fault features that are not well aggregated, However, there is no
intersection between the features of different fault types, and better classification results can still be achieved.
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Figure 5. The fault type diagnostic test set (a) confusion matrix and (b) T-SNE features

3) Fault severity diagnosis of exhaust valve, piston ring and intake valve

The exhaust valve, piston ring and intake valve all have three fault severity degrees. The corresponding fault
severity diagnosis test set confusion matrix and TSNE dimensionality reduction of network extraction features
are shown in Figure 6, Figure 7, Figure 8. It can be seen from the confusion matrix of the three models that the
test accuracy of the model graph has reached 100%, and the generalization ability of the model has been verified.
The figure shows the T-SNE dimensionality reduction of the 32-dimensional feature of the first full-connection
layer of the cascading model's fault severity diagnosis model for piston rings, intake valves and exhaust valves.
The fault types of these three faults are all three, indicating that the data features of different fault severity are
obviously distinguished. In the five random experiments of the fault severity of the three fault types, only the
exhaust valve had one misdiagnosis in the test set diagnosis, and the accuracy of the test set diagnosis in the five

random experiments of the other two fault types was 100%.

Confusion matrix

Actual label

1-2
Predict labels

(2)

(b)

Figure 6. The exhaust valve fault severity test set (a) confusion matrix and (b) T-SNE features
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Figure 7. The piston ring fault severity test set (a) confusion matrix and (b) T-SNE features
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Figure 8. The intake valve fault severity test set (a)confusion matrix and (b)T-SNE features

4) Fault severity diagnosis of cylinder
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There are four kinds of cylinder fault severity, which is more difficult to diagnose than the other three types
of fault. Cylinder fault severity diagnosis test set confusion matrix and features extracted from the network are
represented by TSNE dimensionality reduction as shown in Figure 9. The t-SNE dimensionality reduction
representation of 32-dimensional features of the first full-connection layer of the cylinder fault severity diagnosis
model for the cascade model is shown below. There are four fault states for cylinder fault diagnosis. Compared
with the other three fault severity diagnosis models, the diagnosis is more difficult. However, it can be seen from
the figure that the classification features of different types of faults are clearly distinguished, which can achieve
the purpose of classification. In the process of testing the generalization ability of test set for fault severity
diagnosis of cylinder, only one instance of random experiment was misdiagnosed, and the remaining instances
were correct, and the average test accuracy reached 99.99%.
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Figure 9. The cylinder fault severity test set (a) confusion matrix and (b) T-SNE features

5) Diagnosis accuracy analysis of cascaded network model

The test accuracy of fault type diagnosis model is up to 99.99%. In the fault severity diagnosis model, the test
accuracy of piston ring fault severity diagnosis is 100%, the test accuracy of intake valve fault severity diagnosis
is 100%, the test accuracy of exhaust valve fault severity diagnosis is 99.99%, the test accuracy of cylinder fault
severity diagnosis is 99.99%. The engine fault type and severity can be diagnosed by the cascade of fault severity
diagnosis and fault diagnosis model. The accuracy of the cascaded network fault diagnosis model is 99.99%.
Compared with Pan [18], which used monochromatic decision tree to diagnose fault severity and achieved
93.58% accuracy, and Taha [22], which combined dissolved gas analysis and neural pattern recognition to
complete fault severity diagnosis of power transformer and achieved 92.8% diagnosis accuracy, achieved higher
accuracy.

6) Analysis of the impact of dropout rates on the accuracy of network model

If dropout rate is too large, the model will be Underfitting and the accuracy will be reduced, while if the loss
rate is too small, the model will be overfitting and the model generalization ability will be weak. In order to select
a reasonable loss rate, By adopting four dropout rates of 0.2, 0.3, 0.4 and 0.5 for fault type diagnosis model and
fault severity diagnosis model, reasonable model parameters can be obtained.

Table 3 shows the accuracy of the fault type diagnosis model with different dropout rates. It can be seen that
when the dropout rate of the model is 0.2, the average training accuracy and average verification accuracy of the
model's five random tests are 100%, and the average test accuracy is 99.99%, which is higher than the other three
dropout rates. Moreover, it can be seen that the accuracy decreases with the increase of the loss rate, indicating
that the model has better performance when the loss rate is 0.2, and the increase will lead to the underfitting of
the model.

Table 3.The accuracy of the fault type diagnosis model with different dropout rates

Dropout rate Average training accuracy  Average verification accuracy Average test accuracy
0.2 100.00% 100.00% 99.99%
0.3 100.00% 100.00% 99.98%
0.4 99.96% 100.00% 99.64%
0.5 99.97% 99.63% 99.87%

Table 4.The diagnostic model accuracy of exhaust valve fault severity with different dropout rates

Dropout rate Average training accuracy ~ Average verification accuracy Average test accuracy
0.2 100.00% 100.00% 99.99%
0.3 100.00% 100.00% 99.98%
0.4 100.00% 100.00% 99.87%
0.5 100.00% 100.00% 99.95%

556



J. Electrical Systems 20-2 (2024): 547-559

Table 5.The diagnostic model accuracy of cylinder fault severity with different dropout rates

Dropout rate Average training accuracy  Average verification accuracy Average test accuracy
0.2 100.00% 99.84% 99.89%
0.3 100.00% 99.99% 100.00%
0.4 100.00% 99.94% 100.00%
0.5 100.00% 99.99% 100.00%

Table 6. The diagnosis model accuracy of piston ring fault severity with different dropout rates

Dropout rate Average training accuracy ~ Average verification accuracy Average test accuracy
0.2 100.00% 100.00% 100.00%
0.3 100.00% 100.00% 99.99%
0.4 100.00% 100.00% 99.84%
0.5 100.00% 99.85% 99.89%

Table 7.The diagnostic model accuracy of intake valve failure severity with different dropout rates

Dropout rate Average training accuracy  Average verification accuracy Average test accuracy
0.2 100.00% 100.00% 100.00%
0.3 99.70% 99.96% 99.82%
0.4 99.78% 100.00% 99.85%
0.5 99.81% 99.85% 99.80%

Table 4 shows the diagnostic model accuracy of exhaust valve fault severity with different dropout rates. It
can be seen that when the dropout rate of the model is 0.2, the average test accuracy of the five random tests of
the model is 99.99%, which is higher than the other three loss rates and has the strongest generalization ability,
indicating that the model has better performance when the dropout rate is 0.2. The selected parameters are
reasonable.

Table 5 shows the diagnostic model accuracy of cylinder fault severity with different dropout rates. It can be
seen that when the dropout rate of the model is 0.3 and 0.5, the average test accuracy of the model's five random
tests is 100%, and the average verification accuracy is 99.99%, which is higher than the accuracy of other loss
rates. It shows that the loss rate of model selection is reasonable.

Table 6 shows the diagnosis model accuracy of piston ring fault severity with different dropout rates. It can
be seen that when the dropout rate of the model is 0.2, the average test accuracy, average verification accuracy
and average training accuracy of the five random tests of the model are 100%, which is higher than the accuracy
of other loss rates. Moreover, the overall accuracy of the model decreases with the increase of the dropout rate,
indicating that the optimal performance is achieved when the dropout rate is set to 0.2, and the increase of
dropout rate leads to under-fitting.

Table 7 shows the diagnostic model accuracy of intake valve failure severity with different dropout rates. It
can be seen that when the dropout rate of the model is 0.2, the average test accuracy, average verification
accuracy and average training accuracy of the five random tests of the model are 100%, which is higher than
other dropout rates. The dropout rate of the model is reasonable.

IV. CONCLUSION

The detection of equipment fault types and corresponding fault severity plays an extremely important role in
timely taking reasonable maintenance measures to protect life and reduce production costs. Most of the existing
methods are fault diagnosis. However, some fault severity diagnosis methods have some problems, such as less
fault types and corresponding degrees, simpler problems, higher input requirements, and multiple parameters
need to be determined according to experience.

In this paper, the fault type and severity of engine are diagnosed by using cascade network combined with
GRU. In this paper, the fault type is firstly diagnosed by using the first-level network, and then the fault severity
diagnosis model is used to diagnose the fault severity according to the corresponding fault type. Experimental
results show that the proposed method achieves good accuracy, and the effectiveness of the proposed method is
verified.
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In the following research, we will focus on the transfer learning of this method and the maximum number of
faults that can be diagnosed so that this method can be applied in other fields and create greater economic
benefits.
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