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Class of Representative Two-

colored Digraph in Graph Theory 

 

Abstract: - Graph is simple and intuitive. It can be used to solve many problems in computer science. For a kind of representative 

digraph, the edges (arcs) of the digraph are colored with red and blue colors. The range of the primitive exponent are discussed in 

different cases, and the extremal two-colored digraphs are found by coloring all arcs with two colors. Finally, the primitive exponent 

set is given. The results can provide a reference for the study of primitive exponent of three-colored digraph and the application of 

graph coloring in computer science, such as communication network and coding cache. 
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I.  INTRODUCTION 

Graph theory is an important branch of combinatorial mathematics, which has the characteristics of turning 

complex into simple, flexible, and intuitive, and originated from the study of Königsberg's Seven Bridges Problem. 

With a large number of problems related to graph theory, such as four-color problem, Mitsui and three houses 

problem, traveling around the world, etc., graph theory has been widely used in various fields such as physics, 

chemistry, computer science, communication network, control engineering, social science and management 

science. For example, the concept of tree in graph theory can be used to solve problems in circuit theory. In the 

chemical molecular structure, each atom in the molecule can be regarded as each vertex in the graph, and the 

chemical bond between atoms can be regarded as each edge in the graph, which can solve the problem of molecular 

structure in chemistry. In the communication network, we can use graph theory to solve the problem of 

communication network by representing the communication station as the vertex in the graph and the 

communication line between the communication station as the edge in the graph. 

At present, with the rapid development of computer, graph theory has been widely used in the field of computer, 

not only in the design of communication network and switching network, but also in the combinatorial optimization 

calculation of neural network and coding theory. Some specific applications of graph theory in computer are given 

and some results are obtained [1-3]. The research content of graph theory is very extensive, such as vertex and edge 

coloring problem, vertex covering problem, maximal clique and maximal independent set of graph and so on. In 

fact, many problems in computer-related fields can be transformed into graph theory problems. In this paper, the 

corresponding relationship between graph and matrix is used to solve the coloring problem of a class of graph 

edges in communication network. The following is the relevant basic knowledge required in this paper. 

Let D  be a digraph and 
1 2 1{ , , , }dV v v v +=  be the set of vertices. 

1 2 1dv v v +→ → →  is a walk of length d  

from 
1v  to 

1dv +
 in D . If the vertices in a walk are different, it is called a path. If the beginning and ending of a 

walk are coincided and the vertices in the walk are different, the walk is called a cycle. A two-colored digraph D  
is one in which the arcs in the digraph are colored by any two colors, and let’s assume that the arcs in D  are 

colored by red and yellow. If   is a walk in D , then   can be decomposed into the vector ( ( ), ( ))r y   or 

( ( ), ( ))Tr y  , where ( )r   and ( )y   represent the number of red and yellow arcs in  . If any two vertices in 

D  have a walk to get there, then D  is strongly connected [1]. 

The necessary and sufficient condition for two-colored digraph D  to be primitive is that there exists an 
1 2( , )h h

-walk for every pair of vertices. The minimum value of 
1 2h h+  is called the primitive exponent of D , usually 

written as exp( )D , where 
1 2,h h  are nonnegative integers and 

1 2 0h h+  [1]. 

If D  contains d  cycles, 
1 2{ , , , }dC C C C=  is the set of cycles, and the corresponding cycle matrix 
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for some nonnegative integers 
ir , ( 1,2, , )iy i d= . 

ir  and 
iy  represent the number of red and yellow arcs in 

the 
iC -cycle, respectively. The content of 

2 dM 
, usually written as

2content( )dM 
, represents the capacity of 

2 dM 
. The 

2content( ) 0dM  =  if the rank of 
2 dM 

 is less than 2, or else 
2content( )dM 

 is equal to the greatest 

common factor of all the second-order subformulas of 
2 dM 

. 

Lemma 1.1[2] The necessary and sufficient condition for two-colored digraph D  to be primitive is that 

2content( ) 1dM  =  and D  is strongly connected. 

A closed digraph with n  vertices can be associated with a nonnegative matrix of order n . With the 

improvement of the study of the primitive exponents of a single matrix, it is an inevitable trend to extend a single 

matrix to a pair of matrices. Similarly, the corresponding relationship between a pair of matrices and a bicolor 

digraph can be established. For each pair of nonnegative matrix ( , )A B , in which ijA a= , ijB b= , it is 

accompanied by the seal for ( , )D A B . According to the correspondence, we can know that the value of the element 

in the matrix ija  is non-zero or zero corresponds to whether there is a red arc in ( , )D A B . If the element 0ija   

(or 0ija = ), then there is a (or no) red arc from vertex i  to vertex j ; The values of elements in the matrix ijb  are 

non-zero or zero corresponds to whether there is a blue arc in ( , )D A B , and if the element 0ijb   (or 0ijb = ),  

then there is a (or no) blue arc from vertex i  to vertex j . 

Similar to the correspondence between a single nonnegative matrix and its associated digraph, the nonnegative 

matrix pairs also corresponds to their associated digraph. And because digraphs are usually more intuitive than 

matrices, we usually solve the primitive exponent problems of nonnegative matrix pairs by corresponding two-

colored digraph. At present, some achievements of two-colored digraphs have been made, but the researches are 

generally aimed at some special two-colored digraphs, and the upper bound, lower bound and extremal graphs 

characterization of primitive exponents have been found. The research on the primitive exponent set of two-colored 

digraph is limited to some special cases and is not representative to a certain extent. 

Some basic definitions for the development of this paper are given in [4]. The correspondence between the 

nonnegative matrix pair and a digraph is given, and the important conclusion of Lemma 1.1 is obtained in [5]. In 

[6-7], the problems of two kinds upper bound of primitive index of bicolor digraph have studied and corresponding 

results are obtained. In [8-10], some scholars have systematically studied the exponential problem of bicolor 

graphs, but have hardly mentioned the exponential set problem. With the in-depth study of bicolor digraph, some 

experts extend the primitive index problem to the scrambling index and competition index problem, and get some 

results [11-17]. With the deepening of the research, most of the problems about the original index of bicolor 

directed graph have been solved relatively well, but the problem of index set is still a difficult problem. In [18-19], 

two simple bicolor digraphs are studied, and the primitive exponent sets are obtained, but the selected digraphs are 

special and limited. In [20-21], the authors extend the method of bicolor digraph to trichromatic digraph, and find 

the upper bounds of some special trichromatic digraphs. 

In this paper, we select a representative digraph containing two cycles, which have unfixed common arcs mainly 

reflected in the two cycles, and can intersect at one point, or one common arc, or two common arcs, or even more 

common arcs, that is, including all the possibilities for the intersection of two cycles. For some nonnegative integers 

m , p , q  and 1m , p m . A representative two-colored digraph is studied, and its uncolored condition is 

shown in Figure 1. 

 
Figure 1: Uncolored Digraph of D  
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From Figure 1, we know D  is strongly connected and contains only one ( )qm m q− + -cycle and one ( 1)m+

-cycle. The two cycles have p  common arcs, that is, 1qm m q p qm m q p qm− + − → − + − + → → m q− +  

are common arcs. We can suppose  

                          1 2

2 2

1 21

a a
M

qm m q a m a


 
=  

− + − + − 
                      (1) 

for some nonnegative integers 
1a , 

1qm m q a− + − , 
2a , 

21m a+ − . For the convenience of expression, in the 

following chapters, we uniformly stipulate that 
2 2M 

 is represented by M . In addition, due to the high 

computational complexity of the article, in order to ensure the correctness of the calculation, the following chapters 

all use ‘maple’ for calculations.  

II. THE PRIMITIVE CONDITIONS 

According to Formula (1), we know every element is a nonnegative integer in the cycle matrix M , so 

10 a qm m q  − + , 
20 1a m  + . In this section, we will give the primitive conditions for D  by case.  

Theorem 2.1 If D  is primitive, then 
1 1a q= − , 

2 1a =  or 
1a qm m= − , 

2a m= . 

Proof Formula (1), 1 2( 1) ( )M a m a qm m q= + − − + . By Lemma 1.1, we know the necessary and sufficient 

condition for D  to be primitive is that content ( ) 1M = , so 

                      1 2( 1) ( ) 1M a m a qm m q= + − − + =  .                          (2) 

According to Formula (2), we can talk about it in two ways. 

Case 1: 1M = − . 

At this time, 2 2

1 2

( ) 1 1
( 1)

1 1

a qm m q a
a a q

m m

− + − −
= = − +

+ +
. Since 

1a  is a nonnegative integer, the value of 
1a  

depends on 2 1

1

a

m

−

+
. Because of 

20 1a m  + , so 2 1
0

1

a

m

−
=

+
, that is 

1 1a q= − , 
2 1a = . 

Case 2: 1M = . 

At this time, 2 2

1 2

( ) 1 1
( 1)

1 1

a qm m q a
a a q

m m

− + + +
= = − +

+ +
. Since 

1a  is a nonnegative integer, the value of 
1a  

depends on 2 1

1

a

m

+

+
. Because of 

20 1a m  + , so 2 1
1

1

a

m

+
=

+
, that is 

1a qm m= − , 
2a m= . 

The values of 
1a , 

2a  are respectively substituted into Formula (1), we can see that if 1M = − , then  

                                2 2

1 1

1

q
M

qm m m


− 
=  

− + 
                        (3) 

and if 1M = , then  

2 2

1

1 1

qm m m
M

q


− + 
=  

− 
. 

In both cases, the numbers of red arc are exactly reversed with the number of yellow arcs in M , so we will 

only discuss the case of 1M = −  below, and 

                                                                 
1

2 2

1
( )

1 1

m
M

qm m q

−



− 
=  

− + − + 
.                        (4) 

III. THE PRIMITIVE EXPONENTIAL RANGES AND EXTREMAL TWO-COLORED DIGRAPHS 

Since q  is a nonnegative integer, we can find if 0q = , then 1 0q−   in Formula (3). Obviously, this is not 

reasonable, so we will only discuss the case where 1q  . In this chapter, we will give the primitive exponential 

bounds in different cases, and describe the extremal two-colored digraphs which reach the upper and lower bounds 

of exponents. For ease of expression, let’s assume that ,i jv vp is the shortest path between 
iv  and jv  for any vertices 

( , )i jv v  in D , denoted as ,( )
i jv vr p r=  and ,( )

i jv vy p y= . We assume that the walk starts at vertex 
iv  and follow 
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,i jv vp  to vertex jv  by going around ( )qm m q− + -cycle 
1p  times and ( 1)m+ -cycle 

2p  times, is decomposed. 

When 
1p  and 

2p  taking different values, the corresponding walk decomposition will also change, thus obtaining 

the corresponding value of exp( )D . In addition, let X  represent a column matrix with two rows and one column. 

The elements in X  are greater than or equal to 0 and are integers.  

A. The primitive exponent and the extremal two-colored digraph for 1q =  

Theorem 3.1 If 1q = , D  is primitive, exp( ) 2 1D m= +  if and only if all yellow arcs must be consecutive in 

D . 

Proof The values of 
1a , 

2a  are respectively substituted into Formulas (3) and (4), we can get the length of the 

two cycles is 1 and 1m+  respectively, that is, the ( )qm m q− + -cycle is a loop and there is only one red arc and 

m  yellow arcs on the ( 1)m+ -cycle. Obviously, the m  yellow arcs must be continuous on the ( 1)m+ -cycle. The 

following is discussed in two ways. 

Case 1: exp( ) 2 1D m + . 

First, we can take 
iv  and jv  as the starting and ending vertices of the m  consecutive yellow arcs on the ( 1)m+

-cycle, then it is decomposed into (0, )m . So  

1

2

h
MX

h m

 
=  

− 
 

has a solution. Therefore, 

1 11 1

2 2

0

0

h u m
X M M

h um

− −      
= − = −      

      
. 

Then 
1u m . Next, we take 

iv  and jv  as the ending and starting vertices of the m  consecutive yellow arcs on 

the ( 1)m+ -cycle, then it is decomposed into (1,0) . So  

1

2

1h
MX

h

− 
=  
 

 

has a solution. Therefore, 

1 11 1

2 2

1

0 1

h u m
X M M

h u

− −
−      

= − = −      
      

. 

Then 
2 1u  . Thus 

( ) ( ) ( )( )1 2 1 21 1 1 1 1 2 1
T T

h h M u u m m m+ =  + = + . 

That is 
1 2exp( ) 2 1D h h m= +  + . 

Case 2: exp( ) 2 1D m + . 

Combined with the corresponding cycle matrix, we have 0 1r  , 0 y m  . Taking 
1p m mr y= + −  and 

2 1p r= − , we see that 

1 2

1 1 1

0

r m
p p

y m m

+       
+ + =       

       
. 

Obviously, 
1 0p   and 

2 0p  . This gives exp( ) 1 2 1D m m m + + = + . 

B. Exponential upper bound and the extremal two-colored digraphs for 1q  , 0p =  

Theorem 3.2 If 1q  , 0p = , D  is primitive, then 
2 2 2 2exp( ) 2 2 2 2D q m qm q m qm m q= − + + − + if and only 

if there exists a continuous yellow path of 1qm+  length or a continuous red path of q  length in D . 

Proof When 1q  , 0p = , the ( )qm m q− + -cycle and the ( 1)m+ -cycle intersect at the point qm m q− + . 

At this point, the two cycles have q  red arcs and 1qm+  yellow arcs in D . Combine Formulas (3) and (4), the 

discussion is divided into the following three situations. 

Case 1: 
2 2 2 2exp( ) 2 2 2 2D q m qm q m qm m q − + + − + . 

Taking 
1 1p qm mr y= + + −  and 

2

2 ( 1) ( 1)p q m qm q qm m r q y= − + − − + + − , we can get that 
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2

1 2 2 2 2

1 1 ( 1)( 1)

1 ( 1)( 1)

r q qm q q m qm q
p p

y qm m m qm qm m q m qm qm

−  + − + − +     
+ + =       

− + + − + + − +       
. 

Noting that 0 r q   and 0 1y qm  + . If r q= , then 0y  . If 1y qm= + , then 0r  . Obviously, 
1 0p   

and 
2 0p  . This gives 

2 2 2 2

2 2 2 2

exp( ) ( 1)( 1) ( 1)( 1)

2 2 2 2 .

D qm q q m qm q qm qm m q m qm qm

q m qm q m qm m q

 + − + − + + + − + + − +

= − + + − +
 

Case 2: 
2 2 2 2exp( ) 2 2 2 2D q m qm q m qm m q − + + − + . 

At this time, there exists a continuous yellow path of 1qm+  length or a continuous red path of q  length in D

. Without loss of generality, we can take 
iv  and jv  as the starting and ending vertices of the 1qm+  consecutive 

yellow arcs, or the ending and starting vertices of the q  consecutive red path, then it is decomposed into (0, 1)qm+

. So  

1

2 ( 1)

h
MX

h qm

 
=  

− + 
 

has a solution. Therefore, 

1 11 1

2 2

0 1

1 ( 1)( 1)

h u qm
X M M

h uqm q qm

− −
+      

= − = −      
+ − − +      

. 

Then 
1 1u qm + . Next, we take 

iv  and jv  as the ending and starting vertices of the 1qm+  consecutive 

yellow path, or the starting and ending vertices of the q  consecutive red path, then it is decomposed into ( ,0)q . 

So  

1

2

h q
MX

h

− 
=  
 

 

has a solution. Therefore, 

1 11 1

2 20 ( 1)

h uq qm
X M M

h u q qm m

− −
−      

= − = −      
− +      

. 

Then 
2 ( 1)u q qm m − + . Thus 

( ) ( ) ( )( ) 2 2 2 2

1 2 1 21 1 1 1 ( 1) 2 2 2 2
T T

h h M u u qm m q m qm q qm m q m qm q m qm m q+ =  − + + + − + = − + + − + . 

That is 
2 2 2 2exp( ) 2 2 2 2D q m qm q m qm m q − + + − + . 

Case 3: If the 1qm+  yellow arcs are not consecutive then 
2 2 2 2exp( ) 2 2 2 2D q m qm q m qm m q − + + − + . 

In this case, there are at most qm  long continuous yellow path and 1q−  long continuous red path in D . 

Taking 
1p qm mr y= + −  and 

2

2 1 ( 1) ( 1)p q m qm qm m r q y= − + − − + + − , we see that 

2

1 2 2 2 2

1 1 ( 1) 1

1 ( 1)

r q qm q q m qm
p p

y qm m m qm qm m q m qm m

−  − + − +     
+ + =       

− + − + + − +       
. 

Noting that 0 r q   and 0 1y qm  + . If r q= , then 1y  . If 1r q= − , then 0y  . If 1y qm= + , then 

1r  . If y qm= , then 0r  . Obviously, 
1 0p   and 

2 0p  . This gives 

2 2 2 2

2 2 2 2 2 2 2 2

exp( ) ( 1) 1 ( 1)

2 2 2 1 2 2 2 2 .

D qm q q m qm qm qm m q m qm m

q m qm q m qm m q m qm q m qm m q

 − + − + + − + + − +

= − + − + +  − + + − +
 

To sum up, then the theorem follows. 

C. Exponential upper bound and the extremal two-colored digraphs for 1q  , 1p   

Form Figure.1, we can see 0 p m  . When 1p  , the ( )qm m q− + -cycle and the ( 1)m+ -cycle have one 

common arc at least. Since there is only one red arc on the ( 1)m+ -cycle, this red arc may be on the common arcs. 

Therefore, the upper bounds of the primitive exponent will be discussed in two cases, and the extremal graph 

description that reaches the upper bound of exponents will be given. 

Theorem 3.3 If 1q  , 1p  , the common arcs contain a red arc and D  is primitive, then  
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2 2 2 2 2exp( ) 2 4 2 2 2 1D q m qm q m m qm m q= − + + − − + −  

if and only if there exists a continuous red path of 1q−  length in D . 

Proof Similar proof of theorem 3.2, it can be proved in the following three cases. 

Case 1: 
2 2 2 2 2exp( ) 2 4 2 2 2 1D q m qm q m m qm m q − + + − − + − . 

Taking 
1 1p qm m mr y= − + + −  and 

2 ( 1)( 1) ( 1) ( 1)p q qm m qm m r q y= − − + − − + + − , we know that 

1 2

1 1 (2 2 2)( 1)

1 (2 2 1)( 1)

r q qm m q
p p

y qm m m qm m qm m

− − + −       
+ + =       

− + − + − +       
. 

Noting that 0 1r q  −  and 0 2y qm p  − + . If 1r q= − , then 0y  . If 0 1y qm m  − + , then 0r  . 

If 2 2qm m y qm p− +   − + , then 1r  . Obviously, 
1 0p   and 

2 0p  . This gives 

2 2 2 2 2

exp( ) (2 2 2)( 1) (2 2 1)( 1)

2 4 2 2 2 1.

D qm m q qm m qm m

q m qm q m m qm m q

 − + − + − + − +

= − + + − − + −
 

Case 2: 
2 2 2 2 2exp( ) 2 4 2 2 2 1D q m qm q m m qm m q − + + − − + − . 

At this time, there exists a continuous red path of 1q−  length in D . Without loss of generality, we can take 

iv  and jv  as the starting and ending vertices of the 1q−  consecutive red arcs, then it is decomposed into ( 1,0)q−

. So 

1

2

( 1)h q
MX

h

− − 
=  
 

 

has a solution. Therefore, 

1 11 1

2 2

1 ( 1)

0 ( 1)( 1)

h uq q m
X M M

h u q qm m

− −
− − −      

= − = −      
− − +      

. 

Then 
2 ( 1)( 1)u q qm m − − + . Next, we take 

iv  and jv  as the ending and starting vertices of the 1q−  

consecutive red arcs, then there are two paths from 
iv  to jv , and they are decomposed into (1, 2)qm p− +  or 

(0, 1)qm m− + . So  

1

2

1

( 2)

h
MX

h qm p

− 
=  

− − + 
 

or 

1

2 ( 1)

h
MX

h qm m

 
=  

− − + 
 

has a solution. Therefore, 

1 11 1

2 2

1 2

2 1 ( 1)( 2)

h u qm m p
X M M

h uqm p qm m q qm p

− −
− − +      

= − = −      
− + − + − − − +      

 

or 

1 11 1

2 2

0 1

1 ( 1)( 1)

h u qm m
X M M

h uqm m q qm m

− −
− +      

= − = −      
− + − − − +      

. 

Then 
1 1u qm m − + . Thus 

( ) ( ) ( )( )1 2 1 2

2 2 2 2 2

1 1 1 1 ( 1)( 1)

=2 4 2 2 2 1.

T T
h h M u u qm m q m qm m q qm m

q m qm q m m qm m q

+ =  − + + − + − − +

− + + − − + −
. 

That is 
2 2 2 2 2exp( ) 2 4 2 2 2 1D q m qm q m m qm m q − + + − − + − . 

Case 3: If the 1q−  red arcs are not consecutive, then  

2 2 2 2 2exp( ) 2 4 2 2 2 1D q m qm q m m qm m q − + + − − + − . 

In this case, there are at most 2q−  long continuous yellow paths on the ( )qm m q− + -cycle. Taking 

1p qm m mr y= − + −  and 
2 ( 1)( 1) ( 1) ( 1) ( 1)p qm m q q qm m r q y= − + − − − − − + + − , we see that 

1 2

1 1 (2 2 )( 1)

1 (2 2 )( 1) ( 1)

r q qm m q
p p

y qm m m qm m qm m m q

− − −       
+ + =       

− + − − + − −       
. 
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Noting that 0 1r q  −  and 0 2y qm p  − + . If 0 2r q  − , then 0y  . If 1r q= − , then 1y  . If 

0 y qm m  − , then 0r  . If 1 2qm m y qm p− +   − + , then 1r  . Obviously, 
1 0p   and 

2 0p  . This 

gives 

2 2 2 2 2

2 2 2 2 2

exp( ) (2 2 )( 1) (2 2 )( 1) ( 1)

2 4 2 2 3

2 4 2 2 2 1.

D qm m q qm m qm m m q

q m qm q m m qm m

q m qm q m m qm m q

 − − + − − + − −

= − + + − +

 − + + − − + −

 

Similar to the proof of theorem 3.2 and 3.3, we can also prove that all common arcs are yellow in three cases, 

and get the corresponding upper bound of primitive exponent. 

Theorem 3.4 If 1q  , 1p  , the common arcs are all yellow and D  is primitive, then  

2 2 2 2exp( ) 2 2 2 2 2 2 2D q m qm q m qpm qm pm qp q m p= − + − + + − + − +  

if and only if there exists a continuous yellow path of 1qm p− +  length in D . 

D. The lower bounds of exponent and the characterization of extremal two-colored digraphs when 1q   

In combination with Figure.1 and Formula (3), we can see that the number of yellow arcs is m  times plus 1 of 

the number of red arcs in the ( )qm m q− + -cycle. According to the Drawer Theorem, no matter how all arcs in D  

are colored, there is at least a yellow path of length 1m+  in D  and there is always a yellow path of length m  in 

the ( 1)m+ -cycle. In this section, we are going to focus on the lower bounds of the primitive exponents of D . 

Theorem 3.5 If 1q   and D  is primitive, then  

2 2

2 2

2 2

2 2 4 2 2  ( 0,  that is,  the two cycles intersect at a point)

exp( ) 2 2 4 3 2 1 ( 1 and the common arcs contain a red arc)

2 2 4 2 2  ( 1 and the common arcs do

qm m qm m q p

D qm m qm m q q

qm m qm qpm pm qp m q p q

− + − + =

= − + − + − 

− + + − + − + −   not contain a red arc)







 

if and only if there is at most a yellow path of length 1m+  in D . 

Proof At this time, there exists a continuous yellow path of length 1m+  at most in D . Without loss of 

generality, we can take 
iv  and jv  as the starting and ending vertices of the 1m+  consecutive yellow arcs, then it 

is decomposed into (0, 1)m+ . So 

1

2 ( 1)

h
MX

h m

 
=  

− + 
 

has a solution. Therefore, 

1 11 1

2 2

0 1

1 ( 1)( 1)

h u m
X M M

h um q m

− −
+      

= − = −      
+ − − +      

. 

Then 
1 1u m + . 

Combined with the uncolored digraph of D , we know the two cycles may intersect at a point, or the red arc in 

the ( 1)m+ -cycle may be on the common arc, or the common arcs are yellow in D . Therefore, the following 

discussion is divided into three situations. 

Case 1: The two cycles intersect at a point. 

Subcase 1.1: 
2 2exp( ) 2 2 4 2 2D qm m qm m q − + − + . 

At this time, 0 r q  , then 0 1y qm  + . we can take 
iv  and jv  as the ending and starting vertices of the 

1m+  consecutive yellow arcs. If 
iv  and jv  are on the ( )qm m q− + -cycle, then it is decomposed into 

( 1, 2 )q qm m− − . If 
iv  and jv  are not on the common arc and they are on two different cycles, then it is 

decomposed into ( , )q qm m− . So 

1

2

( 1)

( 2 )

h q
MX

h qm m

− − 
=  

− − 
 

or 

1

2 ( )

h q
MX

h qm m

− 
=  

− − 
 

has a solution. Therefore, 
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1 11 1

2 2

1

2 ( 1)( 1)

h uq m
X M M

h uqm m q m

− −
− −      

= − = −      
− − +      

 

or 

1 11 1

2 2

h uq m
X M M

h uqm m qm m q

− −
−      

= − = −      
− − +      

. 

Then 
2u qm m q − + . Thus 

( ) ( ) ( )1 2 1 2

2 2

1
1 1 1

=2 2 4 2 2 .

T m
h h M u u qm m q m

qm m q

qm m qm m q

+ 
+ =  − + +  

− + 

− + − +

. 

That is 
2 2exp( ) 2 2 4 2 2D qm m qm m q − + − + . 

Subcase 1.2: 
2 2exp( ) 2 2 4 2 2D qm m qm m q − + − + . 

Taking 
1 1p m mr y= + + −  and 

2 ( 1) ( 1)p qm m q qm m r q y= − + − − + + − , we see that 

1 2

1 1 ( 1)( 1)

1 ( 1)( 1) ( )

r q m q qm m q
p p

y qm m m m qm m m qm m q

− + − + − +       
+ + =       

− + + − + + − +       
. 

Noting that 0 r q   and 0 1y qm  + . Combined with the uncolored digraph of D , we know if 0 y   

1m+ , then 0r  ; if 2 2 1m y m+   + , then 1r  ; if ( 1) 2 1 (2 )x m y xm x q− +   +   , then r x . 

Obviously, 
1 0p   and 

2 0p  . This gives 

2 2

exp( ) ( 1)( 1) ( 1)( 1) ( )

2 2 4 2 2 .

D m q qm m q m qm m m qm m q

qm m qm m q

 + − + − + + + − + + − +

= − + − +
 

Subcase 1.3: If there is a shortest yellow path longer than 1m+ , then 
2 2exp( ) 2 2 4 2 2D qm m qm m q − + − + . 

In this case, there are at least 2m+  long continuous yellow paths on the ( )qm m q− + -cycle. Taking  

1 2p m mr y= + + −  and 
2 ( 1) ( 1)p qm m q qm m r q y= − + − − + + − , we see that 

1 2

1 1 ( 2)( 1)

1 ( 2)( 1) ( )

r q m q qm m q
p p

y qm m m m qm m m qm m q

− + − + − +       
+ + =       

− + + − + + − +       
. 

Noting that 0 r q   and 0 1y qm  + . Combined with the uncolored digraph of D , we know if 0 y   

2m+ , then 0r  ; if 3 2 2m y m+   + , then 1r  ; if ( 1) 3 2 (2 )x m y xm x q− +   +   , then r x . 

Obviously, 
1 0p   and 

2 0p  . This gives 

2 2 2 2

exp( ) ( 2)( 1) ( 2)( 1) ( )

2 2 5 3 3 2 2 4 2 2 .

D m q qm m q m qm m m qm m q

qm m qm m q qm m qm m q

 + − + − + + + − + + − +

= − + − +  − + − +
 

In summary, if the two cycles intersect at a point, D  is primitive and there is at most one 1m+  long yellow 

path in D , then 
2 2exp( ) 2 2 4 2 2D qm m qm m q= − + − + . 

Case 2: The common arcs contain a red arc. 

At this time, 0 1r q  − , then 0 2y qm p  − + . Based on Figure.1, we know there is an m  long yellow 

path in the ( 1)m+ -cycle. If the starting or ending point of ,i jv vp is on 1 2qm m q qm m q− + + → − + + → → 

qm q p+ − , thus ,i jv vp  must contain a red common arc, so the 1m+  long yellow path can only be obtained in 

the ( )qm m q− + -cycle. Similar to the analysis of cases 1 in this theorem, to prove 
2 2exp( ) 2 2D qm m= − +  

4 3 2 1qm m q− + − , we can prove it from three aspects: 
2 2exp( ) 2 2 4 3 2 1D qm m qm m q − + − + − , 

2 2exp( ) 2 2 4 3 2 1D qm m qm m q − + − + − and the existence of continuous yellow paths longer than 1m+ , not in 

detail. 

Case 3: The common arcs do not contain a red arc, that is, the common arcs are yellow in D . 
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At this time, 0 r q  , then 0 1y qm p  − + . Based on Figure.1, we know that there is an m  long yellow 

path in the ( 1)m+ -cycle. The starting and ending points of ,i jv vp  will not necessarily be on ( 1)m+ -cycle at the 

same time. Similar to the analysis of cases 1 in this theorem, to prove 2 2exp( ) 2 2D qm m= −  

4 2 2qm qpm pm qp m q p+ + − + − + − , we can prove it from three aspects: 

2 2exp( ) 2 2 4D qm m qm qpm − + + −  

2 2pm qp m q p+ − + − , 
2 2exp( ) 2 2 4 2 2D qm m qm qpm pm qp m q p − + + − + − + −  and the existence of 

continuous yellow paths longer than 1m+ , not in detail. 

IV. THE SET OF THE PRIMITIVE EXPONENT 

In the previous chapter, we have classified and discussed the range of the exponents in the primitive case of the 

two-colored graph, as shown in Figure.1, and characterized the corresponding extreme digraphs. In this section, 

we will discuss the primitive exponents in other situations and characterize the set of primitive exponent. 

Theorem 4.1 If 1q  , 0p = , D  is primitive, then  

1 1 1 1 1exp( ) 2 2 2 1 ( 2 )D k qm k m k q k m m k qm − + − + + +    

if there exists a continuous yellow path of 
1k  length in D . 

Proof When 1q  , 0p = , the ( )qm m q− + -cycle and ( 1)m+ -cycle intersect at point qm m q− + . At this 

point, the two cycles have q  red arcs and 1qm+  yellow arcs in D , and there exists a continuous yellow path of 

1 1 ( 2 )k m k qm+    length at least in D . Without loss of generality, we can take 
iv  and jv  as the starting and 

ending vertices of the 
1k  consecutive yellow arcs in D , then there is only one path from 

iv  to jv  and it is 

decomposed into 
1(0, )k . So 

1

2 1

h
MX

h k

 
=  

− 
 

has a solution. Therefore, 

1 1 11 1

2 1 2 1

0

( 1)

h u k
X M M

h k u q k

− −       
= − = −       

− −       
. 

Then 
1 1u k .  

Next, we take 
iv  and jv  as the ending and starting vertices of the 

1k  consecutive yellow arcs in D . If 
iv  and 

jv  are on the ( )qm m q− + -cycle, then there is only one path from 
iv  to jv  and it is decomposed into 

1( 1, 1 )q qm m k− − + − . If 
iv  and jv  are on two different cycles, then there is only one path from 

iv  to jv  and it is 

decomposed into 
1( , 1 )q qm k+ − . So 

1

2 1

( 1)

( 1 )

h q
MX

h qm m k

− − 
=  

− − + − 
 

or 

1

2 1( 1 )

h q
MX

h qm k

− 
=  

− + − 
 

has a solution. Therefore, 

1 1 11 1

2 1 2 1

1 1

1 ( 1)

h q u k
X M M

h qm m k u q k

− −
− − +       

= − = −       
− + − −       

 

or 

1 1 11 1

2 1 2 1 1

1 1

1 1

h q u k
X M M

h qm k u qk k

− −
− − +       

= − = −       
+ − − +       

. 

Then 
2 1 1 1u qk k − + . Thus 

( ) ( ) ( )( )1 2 1 2 1 1 1

1 1 1 1

1 1 1 1

=2 2 2 1 .

T T
h h M u u qm m q m k qk k

k qm k m k q k m

+ =  − + + − +

− + − + +
 

That is 
1 1 1 1exp( ) 2 2 2 1 D k qm k m k q k m − + − + + . 
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Similar to theorem 4.1, we also prove theorem 4.2-4.3. Therefore, the method of proof is similar, not to give a 

detailed proof process. 

Theorem 4.2 If 1q  , 1p  , the common arcs contain a red arc and D  is primitive, then  

2 2 2 2 2exp( ) 2 2 2  ( 2 1)D k qm k m k q k m k qm p − + − +   − +  

if there exists a continuous yellow path of 
2k  length in D . 

Theorem 4.3 If 1q  , 1p  , the common arcs are yellow and D  is primitive, then  

3 3 3 3 3exp( ) 2 2 2 1 ( 2 )D k qm k m k q qpm pm m qp p k m k qm p − + + − + + − − + +   −  

if there exists a continuous yellow path of 
3k  length in D . 

By combining theorem 3.1-3.5 and theorem 4.1-4.3, we can obtain the set of primitive exponents of the two-

colored digraph. 

Theorem 4.4 For some nonnegative integers q , ( )p p m , ( 1)m m , and D  is primitive, then the set of 

primitive exponent is  

 2 1m +    2 2 2 22 2 4 2 2 1 2 2 4 3 2 1 1qm m qm m q q qm m qm m q q− + − +  − + − + −   

 2 22 2 4 2 2 1, 1qm m qm qpm pm qp m q p q p− + + − + − + −    

 1 1 1 1 12 2 2 1 1, 2  k qm k m k q k m q m k qm− + − + +  +    

 2 2 2 2 22 2 2 1, 2 1  k qm k m k q k q m k qm p− + −  +   − +  

 3 3 3 3 32 2 2 1 1, 1, 2  k qm k m k q qpm pm m qp p k q p m k qm p− + + − + + − − +   +   −  

 2 2 2 22 2 2 2 1  q m qm q m qm m q q− + + − +   2 2 2 2 22 4 2 2 2 1 1  q m qm q m m qm m q q− + + − − + −   

 2 2 2 22 2 2 2 2 2 2 1, 1q m qm q m qpm qm pm qp q m p q p− + − + + − + − +   . 

 

V. CONCLUSION 

This paper studies the digraph D  shown in Figure 1. First, D  is primitive, the conditions that each element of 

the cycle matrix corresponding to D  should meet are discussed. Secondly, we discuss the index by case and find 

the range of the primitive case. Thirdly, all the arcs in D  are colored, and the coloring conditions of the upper and 

lower bounds of exponents are found. Finally, the primitive exponential set of D  is obtained, that is, Theorem 4.4, 

which is also the conclusion of the paper. The research methods and conclusions of this paper can provide some 

reference for the research of the primitive exponent, connectivity index and scrambling index of edge staining of 

graphs in the fields of communication networks, coding cache and chemical molecular mechanism. 
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