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Abstract: - The proposed privacy-preserving framework based on fog computing for securing IoT data was examined through 10 

experiment trials, with each trial dissecting a number of performance related metrics. Specifically, across the trials, latency values varied 

between 45 and 55 milliseconds, which signified that communication overhead was minute and that data were processed efficiently. 

Throughput values also varied considerably, yet only between 95 and 110 megabits per second, which signalled that the framework would 

allow processing data at high speeds. The rates of resource utilization measured in terms of MHR from CPU and Mused in the memory of 

specific fog nodes, varied between 58% and 76% . Regarding the scalability of the proposed framework, it was assessed based on the data 

collected and divided into the corresponding categories. From the energy consumption analysis, the values varied between 470 and 530 

joules , which was recognized as the change caused by the shifting performance of the proposed IoT solution. Finally, communication 

overhead values varied from 970 to 1050 bytes, showing the differences in the effects which privacy-preserving frameworks have on data 

transmission. In conclusion, the results indicate that the proposed complex is immensely efficient in terms of protecting sensitive IoT 

data, ensuring a high level of security, preserving privacy, maintaining the current performance, and being adjusted to the new threats and 

security challenges. 
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I. INTRODUCTION 

The proliferation of the Internet of Things devices and interconnected things offers a wide range of applications, 

starting from connected homes and smart wearables to IoT used in industry automation and development of 

connected cities. This provides an unprecedented level of comfort, safety, efficiency, and innovation but it also 

becomes a security nightmare, since the number of IoT devices is growing exponentially at a potentially alarming 

rate.[1]–[3]. 

During the last years, the security of IoT systems has become a priority for both researchers and practitioners as 

well as policymakers. In particular, the specific characteristics of IoT environment, like heterogeneity, resource 

constraints, and distribution, create serious challenges to maintaining the confidentiality, integrity, and availability 

of data transmitted and processed in these environments .[4]–[6]. 

One of the most critical issues with IoT security is the susceptibility of devices to hacking. In the majority of 

cases, IoT devices lack effective security measures, and they can be easily  

attacked by malevolent parties who want to damage the integrity of the data or acquire access to secret 

information without permission. Additionally, the IoT systems’ interconnectedness implies that if one device is 

compromised, the whole network may be vulnerable.[7]–[9]. 

One emerging paradigm that has shown promise is fog computing, which extends computing capabilities towards 

the network’s edge instead of centralizing it all in the cloud. As such, it ensures that data is processed and 

analyzed at the location where it was created. This enhances both privacy and security since the data does not 

have to pass through central servers – many of the largest data breaches in recent years revolve around such 

centralized systems. Furthermore, this approach is more efficient in terms of the bandwidth and latency it 

consumes. 

In the case of the emergence of Internet of Things devices, privacy is a significant issue as tremendous amounts of 

personal and sensitive data are generated and processed. That can be information connected with heart rate, 
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patterns of speech, and daily household usage, such as devices-gadgets monitoring the health of an individual, 

granting access to smart houses, and so on. Due to the general surveillance such devices are conducting, there is 

always a risk of detecting the data inappropriately spread and misused by some malicious agents. 

As for ensuring the privacy of data in the IoT, it is a complex question that has to be addressed through a 

combination of solutions of a technical and regulatory nature. From data encryption and anonymization methods 

to approaches based on data access and transparency control there is a range of ways to mitigate privacy issues in 

IoT. Using a privacy-preserving solution based on fog computing, it becomes possible to balance data usage 

opportunities and the level of users’ privacy protection. 

II. LITERATURE REVIEW 

Several privacy-preserving mechanisms help protect sensitive data in fog computing environments, where 

computation and analysis are performed at the edge of a network. These mechanisms help ensure the preservation 

of data confidentiality when meaningful computations and analyses are performed. Different privacy-preserving 

mechanisms, with different features, trade-offs and implementation levels, have been designed and 

developed.[10]–[12]. 

Homomorphic encryption is a method of encryption that allows one to perform computations on cyphertext, 

without decrypting the cyphertext first. This allows data to remain secure even as it is processed and analyzed. In 

a fog computing environment, homomorphic encryption could be used to secure data from unauthorized access or 

release. One disadvantage of homomorphic encryption, however, is that it adds significant computational 

overhead; complex operations and big cyphertexts can significantly impact performance.[13]–[15]. 

Differential privacy represents a privacy-preserving approach that aims to secure the privacy of user data and 

make it possible to perform statistical analysis. The method works by disturbing the results of query input with 

noise to such an extent that the nature of the individuals is well preserved but not completely unaffected. 

Differential privacy can be used to fog computing environments, where sensitive data can be pre-filtered before 

any analysis is done to preserve the privacy of user information and facilitate new valuable insights. However, the 

technique can be in need of fine-tuning to strike the right balance between the degree of privacy and the degree of 

utility, potentially rendering it incompatible with many existing datasets or even other methods.[16], [17]. 

Secure multiparty computation is a technique that allows multiple parties to compute a function over their inputs, 

but without sharing those inputs with any other party. Thus, it allows multiple parties to jointly compute a 

function, without revealing their input to the other parties. This can be applied to fog computing with distributed 

data sources, since it permits several parties to perform computations across these sources, while keeping the 

inputs private. This can be particularly useful if data cannot be legally shared or centralized. However, these 

protocols also introduce some communication costs and may require some level of coordination between 

untrusting parties.[18]–[20] 

Zero-knowledge proofs are cryptographic procedures which let one party to prove to the other party that he knows 

particular knowledge without need to reveal the knowledge items. It allows performing authentication and 

verification procedures without the need to transmit any sensitive data. In fog environments, ZKP can be used to 

authenticate users or devices without transmitting sensitive credentials, facilitation increased levels of privacy and 

security. On the other hand, ZKP can require additional computational resources and can be vulnerable to 

particular types of attacks – in such scenarios, its implementation shall be preceded by rigid risk assessment and 

protective measures.[21]–[23]. 

There are other methods that can be used to improve privacy in fog computing environments, apart from the 

above-mentioned well-known privacy-protecting methods. Data anonymization methods are some of the 

mechanisms that can be used in fog computing. Examples of data anonymities include the use of k-anonymity and 

l-diversity. Privacy-enhancing mechanisms are also essential in fog computing as a privacy-preserving 

mechanism. Devices, such as secure enclave processors and trusted execution devices, can be used as privacy-

enhancing mechanisms by protecting sensitive information during computation. Finally, other privacy-preserving 

mechanisms, including secure communication protocols and access controls, can be adopted to curb unauthorized 

access to personal information. 
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III. ARCHITECTURE OF THE PROPOSED FRAMEWORK 

The architecture of the proposed privacy-preserving framework utilizing fog computing for safeguarding IoT data 

is made up of several components and processes that work together to maintain data confidentiality and integrity 

and enable efficient processing. The heart of the framework consists of several key components that are used to 

integrate fog computing with IoT devices and manage data flow within the system. 

 

Figure. 1: System architecture 

The framework in Figure 1 features a strong set of components designed to collect, aggregate, and pre-process 

data at the edge of the network. These components would be housed on IoT or gateway devices located near to the 

data sources, and their purpose is to capture raw data generated by IoT sensors or devices and filter it as necessary 

before features from the data have been extracted or the level of noise in the data has been reduced. By processing 

this data locally at the edge, these features can help to keep latencies low and minimize the bandwidth required by 

the network while preserving data privacy by reducing the transmission of raw data or sensitive information to 

faraway servers. 

The use of fog computing in interaction with IoT devices is one of the key aspects of the developed framework. 

Fog nodes are deployed at specific locations in a network and operate as intermediaries between the IoT devices 

and the centralized cloud counterparts. They use their storage and computational capacity to perform some data 

processing and analyses functions on the data locally, thus decreasing the load on municipal cloud systems and 

decreasing lagging. The use of a form of fog computing in this framework allows liable data processing closer to 

the data sources and ensures that the IoT data can be processed real-time or near real-time while enhancing 

privacy and security. 

The following is the data flow process in the proposed framework, which follows a structured and orchestrated 

process to facilitate efficient and secure transmission of data between different components and entities. Data flow 

process commences by transferring raw data from IoT devices to fog nodes for initial processing. In this stage, 

several processing which include; privacy-preserving computations or analytics are conducted. Later, the 

processed data is transmitted to cloud servers or endpoint for storage, further analysis, or presentation to end-users 

securely. A more structured data flow from this process has been defined in the preceding section. 

Various security mechanisms and protocols that ensure data privacy and integrity have been applied throughout 

the data flow process, as listed in Table 1. By using different encryption approaches, such as homomorphic 

encryption, or secure communication protocols, data is transmitted and stored in an encrypted format, meaning 

interpreted by any unauthorized external entities. Access control mechanisms authorize specific entities or devices 

the control over particular pieces of sensitive data: sensitive data might only be accessed by the service center but 

not by end devices. Authentication mechanisms, such as message authentication codes, verify the identity of both 

the devices and users that engage with the framework, not allowing unauthorized access. 
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Table. 1: Data collection information 

Data Collection 

Method 

Number of IoT 

Devices 

Frequency of Data 

Collection 

Data Types Collected 

Sensor Readings 100 Every 5 seconds Temperature, Humidity, Light 

Level 

GPS Coordinates 50 Every 10 seconds Latitude, Longitude 

Image Capture 20 Every 1 minute Still Images 

Audio Recording 30 Every 30 seconds Sound Samples 

Motion Detection 40 Every 2 seconds Motion Events 

The architecture of the proffered framework could be considered a comprehensive solution regarding securing the 

different types of IoT data, and allowing the realization of fog computing’s benefits. The integration of fog 

computing with IoT devices and the incorporation of sound security and privacy-preserving mechanism resulted 

in a system capable of processing the data generated by the IoT devices efficiently, at scale, and with respect to 

user privacy in distributed settings. With the application being built specifically on edge computing, and focused 

on privacy and security issues with IoT data allows to consider the proposed solution to be one of the promising 

approaches to the issues of securing IoT data in today’s connected data-intensive world. 

IV. PRIVACY-PRESERVING TECHNIQUES IN FOG COMPUTING 

Privacy-preserving techniques are crucial in the context of fog computing in general, as they ensure that sensitive 

data remains confidential while still being used for meaningful computations and analyses. In this way, privacy-

preserving techniques are aimed at securely protecting data during its processing while being close to the 

network’s edge. It is noteworthy that there are several privacy-preserving techniques applied in the context of fog 

computing, with homomorphic encryption being one of the most noteworthy. The key advantage of this approach 

is that computations may be performed on encrypted data without the need to decrypt it. However, this approach 

may prolong the processing task because of the complex cryptographic operations, meaning that its impact can be 

viewed as negative, as computationally intensive operations are impractical in resource-constrained fog 

computing. 

Based on the Figure 2 information, another technique that is worth mentioning is related to privacy and refers to 

differential privacy, which is a mechanism of privacy-preserving that helps organizations in enabling the 

performance of the desired analysis on sensitive data without putting individual persons under threat . This 

solution is based on noise addition to the results of queries so that it is impossible to refer the results to the 

individual records of the persons. As a result, if differential privacy is applied to fog computing systems, it can 

support organizations in analyzing and summarizing the information while anonymizing the data . However, there 

is a risk of the absence of the required balance between privacy and utility for the data and the necessity of 

parameter tuning. In addition, differential privacy is not always an appropriate solution. 

 

Figure. 2:  Privacy preserving framework 
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Secure multi-party computation refers to a privacy-preserving protocol that is used for allowing mutually 

distrusting parties to compute a function jointly over their inputs. By extension, parties would be able to perform 

collaborative computation and analysis without disclosing their inputs to the others. Owing to this potential, 

SMPC has gained popularity in the context of fog computing environments. Particularly, the specified approach is 

being actively promoted in the setting of fog computing to ensure the protection of priv ate data sources . 

However, the specified approach may be associated with several issues such as communication overheads, and the 

need for coordination between parties. 

Zero-knowledge proofs are cryptographic protocols that allow one party to prove to another party that it possesses 

a certain piece of knowledge without showing or transferring this knowledge . They provide a method for 

authentication and verification to occur without the need for sharing sensitive information. This can be used in fog 

computing to allow the authentication of users or devices without having to transmit the sensitive credentials of 

the users . However, zero-knowledge proofs might need additional computational power and may also be 

vulnerable to replay and man-in-the-middle attacks and some other types of attacks if not well implemented . 

There are, however, many other mechanisms that can be used in addition to the above-established techniques for 

privacy preservation in fog computing. First, different data anonymization techniques, such as k-anonymity and l-

diversity, can ensure that the data will not be identified unless more than one homogenous data item is collected . 

Second, privacy-enhancing technologies, specifically secure enclave processors and trusted execution 

environments, can provide protection to data during its computation . Third, privacy-preserving protocols, such as 

secure communication protocols and access control mechanisms, can be used to enhance privacy by blocking any 

opportunities for access to or disclosure of the sensitive information . Overall, by adopting multiple mechanisms 

for privacy preservation, fog computing can protect the privacy effectively, while still allowing the introduction of 

innovative applications and services. 

V. RESULT AND DISCUSSION 

The ten experiment trials that were carried out in this research brought numerous insights on the performance of 

the researched privacy-preserving framework using fog computing to secure IoT data. Each of the metrics, such as 

latency, throughput, resource utilization, scalability, energy consumption, communication overhead, accuracy of 

privacy preservation, security overheads, fault tolerance, and robustness to attacks, provides some implications for 

understanding the research. More specifically, these metrics provide implications regarding the effectiveness of 

the framework in real-world scenarios. 

Based on the Figure 3 , from latency, the average latency for the trials was between 45 and 55 milliseconds per 

trial. It is important to note that lower values of latency indicate that data processing can take place more rapidly, 

and the lower values of encryption, decryption, communication overhead and processing take place more rapidly . 

The current framework achieves a near-real-time processing time for most IOT biometrics data. Latency value 

should be extremely low as having a high latency per time will affect the responsiveness of the system and the 

overall user experience . 

 

Figure. 3:  Latency and Throughput 
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Figure. 4:  Resource utilization 

As expected, throughput measurements of the training and testing set show almost the same rate. As mentioned 

earlier, the throughput is reported in megabits per second , and various observed values across the trials range 

from 95 to 110. The values that are higher represent a relatively faster data transmitting rate. From this final 

measurement of the framework’s characteristic, it can be concluded that the task of exchanging the information 

between intelligence of things devices and fog nodes can be conducted timely and quickly. 

Resource utilization data from the Figure 4 for CPU and memory utilization in fog nodes can provide useful 

information about efficient resource utilization is within the framework. The average CPU utilized was between 

58% and 68%, while memory utilization was between 65% and 76%. With lower resource utilization, the 

framework in place ensures that resources are managed efficiently, with computational and memory resources 

being utilized effectively without overloading the fog nodes. 

In Figure 5, Scalability refers to the ability of the framework to scale with the increasing number of IoT devices 

and fog nodes. The trials were categorized as having high, moderate, or low scalability based on the trend of 

performance. If the performance metrics, for example, network latency, throughput, and resource utilization were 

consistently high in a trial not dropping at all, we considered them as having high scalability. In contrast, if the 

performance metrics dropped as the load on the traffic generator increased in a trial we considered the trial as 

having moderate to low scalability. The trends provide incitement of the ability of the framework to accommodate 

increasing number of IoT devices with growing data. 

In Figure 6, energy consumption is measured in joules, which is directly related to the energy that IoT devices and 

fog nodes consume while processing and transmitting data. During the trials, the energy consumption varied from 

470 to 530 joules. As such, lower energy consumption means that the framework uses energy more effectively, 

which is highly important in the context of IoT devices, which could be heavily reliant on batteries. The data 

implies that the performance and energy consumption are directly associated, with the framework managing to 

achieve a perfect balance, as it uses the required amount of energy to complete the task. At the same time, no 

more energy is spent, which means that the devices stay responsive, and data is processed effectively without 

wasting energy. 

 

Figure. 5:  Scalability 
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Figure. 6:  Energy consumption 

In Figure 7, communication overhead was measured in bytes. These values reflected the additional data volume, 

introducing by privacy-preserving techniques in transmissions between devices during one trial. These values 

ranged between 970 and 1050 bytes. While larger communication overhead values will lead to additional data 

perfusion this may also have an effect on network bandwidth utilization and latencies. It should be noted that there 

is a trade-off between the need to protect data from a potential breach and increased communication overhead, as 

intrusion and extraction of data by other parties is the main fear associated with modern handheld devices. 

 

Figure. 7:  Communication overhead 

Based on the Figure 8, the accuracy of privacy preservation was determined. The degree of effectiveness of 

privacy-preserving measures is indicated by the observed index. Its values for each trial amount to 92%-97% in 

each case. Such relatively high rates are suggestive of the proper level of security ensured by the chosen 

framework due to its particular protecting components. Therefore, this automated system is evidently capable of 

safeguarding any sensitive private information included in the concerning datasets from being exposed and 

accessed by anyone. Nevertheless, it still remains vital to further monitor the situation as well as improve the 

system in order to adapt it to the changing requirements and be invariably protected from the identified threats. 
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Figure. 8:  Accuracy and Security overheads 

The results presented in Table 5 also provide evidence about security overheads, consisting both of the 

computational and communication overheads for data integrity. The amounts of the observed security overheads 

ranged from 4% to 7%. These results show that there is relatively low security overhead related to offer security 

measures. It means that the security overhead values are rather low, and they do not significantly affect the 

effectiveness of the framework. At the same time, these low security overhead values imply that the framework 

offers high security levels, which are close to those generated without security measures. Therefore, it is 

reasonable to suggest that security requirements can be fully satisfied with expected frameworks characteristics. 

Fault tolerance is a feature of the given framework to function properly whenever nodes are lost or the network is 

down. Throughout our experiments, fault tolerance ranged between 94% and 99% and the higher the value was, 

the better was the anticipation of node failure and the network was accepted. When a higher fault tolerance value 

is present, the better the value is built to be in response to the network outage. However, redundancy mechanisms 

must be put in place in addition to the disaster recovery process to improve the fault tolerance degree further. 

Robustness to attacks is an integrated characteristic that represents the framework’s ability to resist various types 

of attacks, such as eavesdropping, tampering, and denial-of-service. The trials have shown that the level of 

“Robustness to attacks” remains high across the trials, with the observed values of robustness ranging from 87% 

to 93%.  

VII. CONCLUSION 

The experiment trials to evaluate the proposed privacy issues preserving framework using fog computing for 

securing IoT data were conducted. A vast amount of insights was discovered regarding its performance and 

effectiveness throughout the trials . Overall, key performance metrics, including latency, throughput, resource 

utilization, scalability, energy consumption, communication overhead, accuracy of privacy preservation, security 

overheads, fault tolerance, and robustness to attacks were analyzed throughout numerous experiment trials . 

Obtained results demonstrate that the average latency ranges from 45 to 55 milliseconds, which is fairly efficient. 

Throughput values also vary between 95 and 110 megabits per second , which is also relatively high, suggesting 

that data processing and transmission are efficient in the framework . Furthermore, the results for resources such 

as CPU and memory utilization in nodes ranges from 58 to 76%, indicating that these resources are used 

efficiently in the fog nodes. 

There has been an observed performance trend that has categorized the scalability as high, moderate, or low. 

Energy consumption was within the range of 470-530 joules, which illustrated the energy efficiency that was 

balanced by the high performance. The communication overhead was demonstrated within the range of 970-1050 

bytes, hence indicating the mechanism’s privacy-preserving aspect on data transmission. 

The measurements indicate that the accuracy of privacy preservation was from 92% to 97% and all values are 

rather high, meaning that the levels of data confidentiality were high. Security overheads were from 4% to 7%, 

showing that firewalls and other security measures were effective and did not decrease the performance of the 
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network essentially. The values for fault tolerance were from 94% to 99% meaning that resilience to node failures 

and network disruptions was rather high; robustness to attacks was from 87% to 93%, and one can argue that the 

framework demonstrated a high level of mitigation of security threats. 

REFERENCE 

[1] K. Shirisha Reddy and M. Balaraju, “Comparative Study on Trustee of Third Party Auditor to Provide Integrity and 

Security in Cloud Computing,” Mater. Today Proc., vol. 5, no. 1, pp. 557–564, 2018, doi: 10.1016/j.matpr.2017.11.118. 

[2] I. Priyadarshini et al., “A new enhanced cyber security framework for medical cyber physical systems,” Software-

Intensive Cyber-Physical Syst., vol. 35, no. 3–4, pp. 159–183, 2021, doi: 10.1007/s00450-021-00427-3. 

[3] N. El Kamel, M. Eddabbah, Y. Lmoumen, and R. Touahni, “A Smart Agent Design for Cyber Security Based on 

Honeypot and Machine Learning,” Secur. Commun. Networks, vol. 2020, 2020, doi: 10.1155/2020/8865474. 

[4] K. Kasat, D. L. Rani, B. Khan, A. J, M. K. Kirubakaran, and P. Malathi, “A novel security framework for healthcare data 

through IOT sensors,” Meas. Sensors, vol. 24, no. October, p. 100535, 2022, doi: 10.1016/j.measen.2022.100535. 

[5] W. Shi, A. Haga, and Y. Okada, “Web-Based 3D and 360∘ VR Materials for IoT Security Education and Test Supporting 

Learning Analytics,” Internet of Things (Netherlands), vol. 15, p. 100424, 2021, doi: 10.1016/j.iot.2021.100424. 

[6] W. H. Lee and R. B. Lee, “Multi-sensor authentication to improve smartphone security,” ICISSP 2015 - 1st Int. Conf. 

Inf. Syst. Secur. Privacy, Proc., pp. 270–280, 2015, doi: 10.5220/0005239802700280. 

[7] K. Wan and V. Alagar, “Context-aware security solutions for cyber-physical systems,” Mob. Networks Appl., vol. 19, no. 

2, pp. 212–226, 2014, doi: 10.1007/s11036-014-0495-x. 

[8] G. M. H. Bashar, M. A. Kashem, and L. C. Paul, “Intrusion Detection for Cyber-Physical Security System Using Long 

Short-Term Memory Model,” Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/6172362. 

[9] P. Nayak and G. Swapna, “Security issues in IoT applications using certificateless aggregate signcryption schemes: An 

overview,” Internet of Things (Netherlands), vol. 21, no. November 2022, p. 100641, 2023, doi: 

10.1016/j.iot.2022.100641. 

[10] D. Tripathi, A. Biswas, A. K. Tripathi, L. K. Singh, and A. Chaturvedi, An integrated approach of designing 

functionality with security for distributed cyber-physical systems, vol. 78, no. 13. Springer US, 2022. doi: 

10.1007/s11227-022-04481-9. 

[11] M. Shrestha, C. Johansen, J. Noll, and D. Roverso, “A Methodology for Security Classification applied to Smart Grid 

Infrastructures,” Int. J. Crit. Infrastruct. Prot., vol. 28, p. 100342, 2020, doi: 10.1016/j.ijcip.2020.100342. 

[12] B. Wan, C. Xu, R. P. Mahapatra, and P. Selvaraj, “Understanding the Cyber-Physical System in International Stadiums 

for Security in the Network from Cyber-Attacks and Adversaries using AI,” Wirel. Pers. Commun., vol. 127, no. 2, pp. 

1207–1224, 2021, doi: 10.1007/s11277-021-08573-2. 

[13] Q. A. Al, G. Mohd, and A. Mohd, “Dynamic Security Assessment for Power System Under Cyber ‑ Attack,” J. Electr. 

Eng. Technol., vol. 14, no. 2, pp. 549–559, 2019, doi: 10.1007/s42835-019-00084-2. 

[14] Y. nan Wang, Z. yun Lin, X. Liang, W. yuan Xu, Q. Yang, and G. feng Yan, “On modeling of electrical cyber-physical 

systems considering cyber security,” Front. Inf. Technol. Electron. Eng., vol. 17, no. 5, pp. 465–478, 2016, doi: 

10.1631/FITEE.1500446. 

[15] P. Karthika, R. G. Babu, and A. Nedumaran, “Machine learning security allocation in IoT,” 2019 Int. Conf. Intell. 

Comput. Control Syst. ICCS 2019, no. Iciccs, pp. 474–478, 2019, doi: 10.1109/ICCS45141.2019.9065886. 

[16] D. Gupta, S. Rani, S. Raza, N. M. Faseeh Qureshi, R. F. Mansour, and M. Ragab, “Security paradigm for remote health 

monitoring edge devices in internet of things,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2023, doi: 

10.1016/j.jksuci.2022.12.020. 

[17] M. K. Hasan, A. K. M. A. Habib, S. Islam, N. Safie, S. N. H. S. Abdullah, and B. Pandey, “DDoS: Distributed denial of 

service attack in communication standard vulnerabilities in smart grid applications and cyber security with recent 

developments,” Energy Reports, vol. 9, pp. 1318–1326, 2023, doi: 10.1016/j.egyr.2023.05.184. 

[18] K. A. Alaghbari, M. H. M. Saad, A. Hussain, and M. R. Alam, “Complex event processing for physical and cyber 

security in datacentres - recent progress, challenges and recommendations,” J. Cloud Comput., vol. 11, no. 1, 2022, doi: 

10.1186/s13677-022-00338-x. 

[19] P. Kumari and A. K. Jain, “Computers & Security A comprehensive study of DDoS attacks over IoT network and their 

countermeasures,” vol. 127, 2023, doi: 10.1016/j.cose.2023.103096. 

[20] P. Milczarski, Z. Stawska, and S. Dowdall, “Security systems with biometry based on partial view facial images using 

geometrical features,” Proc. 2018 IEEE 4th Int. Symp. Wirel. Syst. within Int. Conf. Intell. Data Acquis. Adv. Comput. 

Syst. IDAACS-SWS 2018, pp. 204–209, 2018, doi: 10.1109/IDAACS-SWS.2018.8525678. 

[21] C. Li, X. Guo, and X. Wang, “An Autonomous Cyber-Physical Anomaly Detection System Based on Unsupervised 

Disentangled Representation Learning,” Secur. Commun. Networks, vol. 2021, 2021, doi: 10.1155/2021/1626025. 

[22] K. Kandasamy, S. Srinivas, K. Achuthan, and V. P. Rangan, “IoT cyber risk: a holistic analysis of cyber risk assessment 

frameworks, risk vectors, and risk ranking process,” Eurasip J. Inf. Secur., vol. 2020, no. 1, 2020, doi: 10.1186/s13635-

020-00111-0. 

[23] F. S. De Lima Filho, F. A. F. Silveira, A. De Medeiros Brito Junior, G. Vargas-Solar, and L. F. Silveira, “Smart 

Detection: An Online Approach for DoS/DDoS Attack Detection Using Machine Learning,” Secur. Commun. Networks, 

vol. 2019, 2019, doi: 10.1155/2019/1574749. 


