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Abstract: - Irreversible vision loss is a common consequence of glaucoma, demands accurate and timely diagnosis for effective 

management. This research aims to enhance glaucoma classification accuracy by fusing information from two distinct imaging modalities 

like using deep learning explores the fusion of these modalities through an innovative neural network architecture with optimization. This 

approach combines Deep Stochastic Variational Autoencoder Convolution Neural Networks (DSVAECNN) and Adam optimization 

techniques to enable robust and accurate classification of glaucoma. A multi-path architecture is designed to accommodate both imaging 

as optical coherence tomography (OCT) radiomics features and fundus morphological features simultaneously. To ensure the effectiveness 

of the model, this study investigates the implementation of advanced optimization algorithm such as Adam, to expedite convergence and 

alleviate the risk of over fitting. The resulting model demonstrates improved generalization capabilities, critically for accurate diagnosis 

across diverse patient populations. A comprehensive OCT and fundus images dataset is used to evaluate the proposed approach from a 

representative cohort of glaucoma patients and healthy individuals. Quantitative various metrics including sensitivity, accuracy and 

specificity are employed toward appraise the accomplishment of the fusion-based classification model. Comparisons with current 

techniques show the dominance of the proposed move toward in accurately detecting glaucoma cases. This research provides the 

advancement of glaucoma diagnosis by effectively harnessing the synergy between fundus image and OCT scans and findings helpful 

information for clinics, ultimately facilitating early detection and personalized management of glaucoma, thus preserving vision for affected 

individuals. 
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I. INTRODUCTION 

The progressive optic neuropathy known as glaucoma; this condition causes irreversible vision loss globally. Timely 

and accurate classification of glaucoma stages is essential for effective patient management. The evolution of 

glaucoma classifying methods spanning from traditional methods to the recent advances in deep learning approaches 

gains research work extensively. Detecting glaucoma is a critical aspect of eye health, It is one of the leading causes 

of blindness in the world. There are various methods and techniques used for glaucoma detection, including both 

traditional and advanced approaches. An excess of fluid builds up in the anterior part of the eye, leading to retinal 

disease glaucoma, causing damage to the optic nerve. Among the types of glaucoma there are Angle-closure 

glaucoma (ACG) and Primary open-angle glaucoma (POAG) [1]. A common cause of glaucoma, POAG is caused 

by the eye being unable to drain fluid, causing the pressure to build up and damaging the optic nerve. Pressure in 

the eye rises when the drainage angle is blocked. There are a number of symptoms, including severe eye pain, blurry 

vision, headaches, etc. As a result, regular eye examinations are helpful in both cases [2], and early treatment can 

prevent blindness. It is predicted that by 2040, there will be 111 million people affected by this disease compared 

to 75 million in 2020. Asia and Africa will be the most affected, followed by South America. Having glaucoma in 

one's immediate relatives increases the likelihood that one will develop the disease compared to having an adverse 

family history [3]. In each of the 100 subjects (40 healthy and 60 glaucoma), a horizontal B-scan was acquired using 

OCT [4]. Adaptive compensation was used to enhance all images. Based on compensated images, a system 

developed and trained a deep learning network to digitally stain each layer of the optic nerve head (ONH). The 

intersection over union (IU) is a factor in addition to sensitivity, specificity and accuracy, the dice coefficient was 

used to assess the accuracy of the algorithm (in comparison to manual segmentations). Using glaucoma and healthy 

subjects as comparisons, the method looked at the effect of compensation and training images to achieved good 

results. The feasibility of automated glaucoma detection using CNNs trained from non-medical data [5]. In order to 
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generate feature vectors from fundus images, two CNNs were applied, namely OverFeat and VGG-S. Based on the 

analysis of the Drishti-GS1 dataset, the method approach is viable and provides significant evidence that when there 

is not enough data to fine-tune the network, in order for transfer learning to take place, it is essential to select a well-

designed image preprocessor. Detection of glaucoma using the CNN U-net [6]. By using the U-net model, it can 

identify precisely where glaucoma develops in eye. In comparison to CNN model, U-net uses a simpler algorithm 

while being more efficient. In this U-net, images are segmented, features are extracted and classified using 

preprocessing, segmentation, and feature extraction. Method uses hybrid layers of ResNet-34 encoding and classical 

U-Net decoding for robust disc and cup segmentation [7]. U-Net and ResNet are combined to produce a pre trained 

model, thus enabling it to train faster with fewer epochs, and hence avoid over-fitting. A density-based probability 

function and local binary patterns are used in optical domain segmentation [8]. In order to prevent segmentation 

mistakes, the red channel was segmented first, followed by equalizing the histograms of all images before 

segmentation begins. Through the use of fundus image, an algorithm is developed in order to be used to diagnose 

glaucoma [9]. There are 1,542 images in the dataset and these are divided into 754 training images, 324 validation 

images, and 464 test images. Used Tensorflow to construct convolutional neural networks and simple logistic 

classifications from the datasets. Pretrained GoogleNet Inception v3 model was fine tuned using the same datasets. 

82.9% of the training data accuracy, 79.9% of the validation data accuracy, and 77.2% of the test data accuracy and 

achieved a 92.2% AUROC in the convolutional neural network.By using a hybrid feature set, the technique detects 

glaucoma in digital fundus images [10]. For improving automated glaucoma diagnosis accuracy, a novel method 

applied of structural features, such as cup to disc ratio, is combined with non-structural features, such as texture and 

intensity. When structural and non-structural features conflict, a suspect class is introduced in automated diagnosis. 

A suspect class was introduced to ensure that the proposed system is highly sensitive to glaucoma cases from rural 

areas. In general, the proposed system has a sensitivity of 96 and a specificity of 87 %. Several aspects of the 

detection systems are examined and analyzed for mobile use in order to determine the most effective factors for 

Glaucoma detection systems based on CNNs[11]. According to MobileNet, training time, dataset variability and 

dataset size are important mobile considerations. Fundus images were utilized to detect ophthalmologic diseases 

[12]. The NCAR algorithm and the SVM algorithm were used to extract deep features with high representative 

details from the R-CNN+LSTM-based model. To make fast predictions, the model requires powerful hardware 

resources because to its high number of learnable parameters. By using five neural network models fully connected, 

a DL model was developed for the early detection of glaucoma[13]. Based on the results, ResNet50 appears to be 

the most accurate. The model used only one dataset for testing and training, and there was no comparison of how 

the models performed in actual clinical examinations by ophthalmologists. Through deep learning-based feature 

extraction, glaucoma can be detected at an early stage [14]. From the images containing optic cups (OC), Hybrid 

features descriptors are used to extract features from the optic disc (OD), among them are histograms orientate 

gradient (HOG), local binary patterns (LBP), and CNNs and speeded up robust features (SURF). A low-level feature 

extraction method is provided by the HOG descriptor, while a texture extraction method is provided by the LBP 

and SURF descriptors. Additionally, CNN is used to compute high-level features and also selected the most 

representative features using the MR-MR method, a technique that involves selecting and ranking features. In the 

final step, several multi-class classifiers, such as SVM, RF, and KNN, are used to classify fundus images as healthy 

or diseased. There have been good results obtained using models based on the RF algorithm combined with HOG, 

CNN, LBP, and SURF feature descriptors, when using k-fold cross validation to detect early glaucoma. Utilizing 

maps of retinal nerve fibre thickness is evaluated the diagnostic effectiveness of machine learning models for 

glaucoma diagnosis [15]. The model outperforms conventional RNFL thickness measurements in terms of accuracy. 

According to current literature, the limitations of current glaucoma detection methods must be overcome by 

expanding novel methods and testing them on a larger range of datasets. Flexible and reliable evaluation metrics is 

also crucial to ensuring the effectiveness of the techniques. Multimodal imaging techniques, including alternative 

imaging techniques, can enhance detection accuracy by exploring multiple modalities. In addition, novel algorithms 

must be developed in order to improve the accuracy of feature extraction and segmentation. The incorporation of 

clinical data in DL models is another way to make them more applicable in clinical settings. It is anticipated to 

promote research work in this field by employing DL and considering some factors such as regularizing network 

parameters  will greatly improve automatic glaucoma diagnosis' precision and efficiency. Conducted a retinal fundus 

glaucoma challenge dataset and suggested a multitask deep learning model to diagnose glaucoma [16]. The model's 

application is limited by the availability and cost of expert annotations. In order to improve the classification 

accuracy of healthy and glaucoma samples, this work developed a deep learning model with neural network 
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optimization by fusing fundus and OCT features. A novel DSVAECNN and Adam optimization technique is 

combined in the proposed work to provide more effective and robust glaucoma classification. 

II. PROPOSED METHODOLOGY 

A new techniques of Deep Learning convolution Neural Networks (DLCNNs) and optimization techniques are 

developed to diagnose the retinal diseases using OCT and fundus images in this work. Radiomics features [17-18] 

i.e image texture features are extracted from OCT images and a Nadam optimizer [19] coupled with a U-net 

segmentation model [20] is used to extract morphological features from fundus images. As a final step, the 

DSVAECNN model [21] is used to classify retinal image as glaucoma or healthy based on features fusion of OCT 

and fundus. Figure 1 is an illustration of the system model block diagram. 

 

Radiomics  Feature

Extraction 

Segmentation

Features Extraction

Fusion

Classification

Glaucoma Healthy

 

Figure 1: System model block diagram 

2.1 OCT Image Feature Extraction 

A total of 94 features were extracted from OCT images through six different radiomics which are as follows.  

(i) First order-19 features: Voxel intensities within an image region are described by first-order statistics. 

They provide essential statistical information about an image without considering spatial relationships 

between pixels. These features are mainly useful for image characterization. 

(ii) Gray level co-occurrences Matrices (GLCM)-24 features: Image texture analysis using GLCM goes 

beyond first-order texture features by considering the spatial relationships between pixels. It quantifies the 

occurrence frequencies of pairs of pixel intensities at specified relative positions in an image, they make 

available further detailed and descriptive texture information. 

(iii) Gray Level Dependence Matrix (GLDM) -14 features: This provides unique texture features that 

complement the texture exploration techniques like GLCM by its directional and rotational invariance, 

local texture characterization, and also measures contrast and dissimilarity.  

(iv) Gray Level Run Length Matrix (GLRLM) -16 features: It characterizes the runs of consecutive pixels 

with the same intensity value along specified directions; provides set of features so as to illustrate the 

circulation of these run lengths of texture patterns and structures present in an image. 

(v) Gray Level Size Zone Matrix (GLSZM) -16 features: It quantifies the distribution of connected regions 

of pixels with the same intensity value in an image and provides a unique set of texture characteristics that 

provides information concerning the size and spatial arrangement. 

(vi) Neighboring Gray Tone Difference Matrix (NGTDM) -5 features: It focuses on quantifying the 

differences between neighboring pixels in an image and provides a set of features that describe the 

allocation of these local intensity differences, offering fine-scale variations in texture patterns. 
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2.2 Fundus image feature extraction 

The texture feature extraction from fundus image comprises a retinal segmentation that segments optic cup and disc 

using U-Net with Nadam optimization. Further an extraction of morphological features is performed from 

segmented image. 

2.2.1 Segmentation 

Segmentation of fundus images using U-Net is a popular and effective approach, particularly for tasks like 

segmenting retina image. The cup and disc are crucial anatomical structures within the optic nerve head, and their 

accurate segmentation is essential for detecting and monitoring glaucoma, here are the details of U-Net architecture: 

• Encoder-Decoder Structure: The U-Net architecture is a unique encoder-decoder structure, the encoder 

captures contextual and hierarchical feature information from the image, while the decoder reconstructs the 

segmented masks. It encapsulates the intricate details and boundaries of the cup and disc regions. 

• Skip Connections: With U-Net, the encoder and decoder have skip connections between their corresponding 

layers. These connections help in retaining fine-grained spatial information, enabling the network to recover 

accurate segmentation boundaries. For cup and disc segmentation, where precise boundaries are critical, skip 

connections are beneficial in maintaining spatial fidelity. 

• Limited Training Data: The U-Net architecture ability for the purpose of learning on or after a smaller set of 

data and   effectively capture relevant features makes it a suitable for accurate training. 

• Custom Loss Functions: U-Net can easily accommodate custom loss functions for cup and disc segmentation, 

specialized loss functions can emphasize accurate boundary detection and prohibit misclassification near the 

optic nerve head. 

• Fine-Tuning and Transfer Learning: U-Net architecture allows for fine-tuning on smaller datasets, which 

can help to improve segmentation accuracy using Nadam optimization. However, it depends on the network 

structural design and hyper parameters. The equations for the Nadam optimizer in U-Net are as follows: 

When discussing weight initialization techniques and optimization algorithms, computing each parameter first 

moment m   as in Eq. (1) and second moment v  as in Eq. (2). These moments usually refer to statistics concerning 

a neural network's weights. An adaptive optimization algorithm and batch normalization algorithms rely heavily on 

these moments. 

1 1 1(1 )t t tm m g −=  + − 
                              (1)

 

2

2 1 2(1 )t t tv v g −=  + − 
                           (2) 

Where tg  measures the gradient loss in relation to the parameters at a given current time step t , the tm  and tv   are 

the moments of the parameter  at current time step,  
1  and 

2  
 are the exponential decay rates of first and second 

moments as in Eq. (3) and Eq.(4), typical values are nearly to one. 

Compute the bias-corrected moments: 

1(1 )

h t
t t

m
m


=

−
                                                  (3)

 

2(1 )

h t
t t

v
v


=

−
                                                    (4)

 

Update the parameters using the look ahead momentum as in Eq. (5) and Eq. (6): 

2

2 2(1 )b h

t t tv g v = −  + 
                                (5)

 

1 1(1 )b h

t t tm g m = −  + 
                                 (6)
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Where model parameters are often represented by 
t  

at time step t  in Eq. (7), it describes how neurons in a network 

are connected and how they are biased, the  is learning rate, controlling the step size in the parameter update. The 

ò  important one which prevents division by zero by being the smallest value. 

1.2.2 Fundus image feature extraction 

As part of this study, cup disc ratio (CDR) [22], disc damage likelihood scale (DDLS) [23-24] and ISNT rule [25-

26], segmented fundus images are used to calculate these features. 

CDR:  In the fundus image, a circular region is known as the optic disc where the optic nerve exists in the eye, and 

it appears as a lighter-colored circular area. As in figure 2, the cup is the central depression or hollow within the 

optic disc, and it appears as a darker circular area.   

 

Figure 2: Optic cup and disc structure 

The cup is formed because the retinal nerve fibers converge to form the optic nerve. The cup-to-disc ratio is typically 

expressed as a number between 0 and 1. A CDR value zero indicates that no cupping, and the entire optic disc is 

uniform. A CDR value one indicates that cup occupies the entire optic disc, indicating significant cupping. In 

glaucoma, there is progressive damage to the retinal nerve fibers, leading high CDR as the cup becomes larger due 

to neural loss. A higher cup-to-disc ratio can be indicative of glaucoma or other optic nerve-related abnormalities.                                           

DDLS: It is not affected by the disc size change. A major factor in Glaucoma assessment is neuro retinal rim 

deterioration. It is possible to assess the initial disc region for DDLS. In neuro retinal rim, binary presentation is 

achieved by sectors. In subsampling images of configurations nearby optic discs, minimal width of rim region can 

be calculated. Cup edge points and image edge points can be measured using Euclidean distance.  

Segmentation and feature extraction algorithm as follows: 

Step 1: Image Preprocessing: Preprocess the fundus image includes cropping, resizing, and adjusting 

brightness/contrast to improve the contrast of blood vessels in the optic nerve head region and other structures using 

adaptive histogram equalization. 

Step 2: Optic Disc Segmentation: To categorize the optic disc province in fundus image, segmentation achieved 

using U-Net machine learning-based approach, which results a binary mask indicating the boundaries of the optic 

disc. 

Step 3: Optic Disc Features Extraction: Extract relevant features from the segmented optic disc region, features 

include area, perimeter, circularity, and aspects related to blood vessel distribution and cup-to-disc ratio. 

Step 4: Cup-to-Disc Ratio Calculation: Calculate the cup-to-disc ratio (CDR) from the extracted features. It 

defined as the ratio of cup (depression in the optic disc) to optic disc size. High CDR values are associated with 

glaucoma and increased risk of vision loss. 
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Step 5: Optic Nerve Head (ONH) Assessment: Extracted features are combining with CDR, to assess the optic 

nerve head's condition. Assign a score evolved from the severity of the damage. A higher CDR and specific feature 

values may indicate a higher likelihood of damage. 

Step 6: Disc Damage Likelihood Scale (DDLS) Classification: Use the assessment results to classify the optic 

nerve head (ONH) condition according to the DDLS scale typically ranges from zero to five, with zero 

demonstrating no harm and five  representing severe harm. 

Step 7: Interpretation and Decision: Interpret the DDLS classification to determine the likelihood of optic nerve 

damage due to glaucoma. A glaucoma or healthy classification is made based on this result. 

ISNT rule: Describes the typical arrangement of the retinal nerve fiber layer (RNFL) thickness in the optic disc as 

seen in fundus images. The letters ISNT stands for: I – Inferior, S – Superior, N – Nasal, T – Temporal. ISNT rule 

suggests that in a healthy eye, the RNFL thickness is usually thickest in the inferior region of the optic disc, followed 

by superior, nasal, and temporal regions, in that order, this pattern is observed in fundus images. In glaucoma, there 

is progressive damage to the retinal nerve fibers, leading to characteristic changes in the RNFL thickness. Deviations 

from the normal ISNT pattern in fundus images can be an indicator of potential glaucoma or other optic nerve 

abnormalities. 

2.3 Fusion techniques 

The fusion of fundus image features (CDR, DDLS, ISNT rule) with OCT image radiomics features leverages the 

strengths of both imaging modalities, enhancing an accuracy and reliability of glaucoma. It enables a more 

comprehensive assessment of the retinal health by capturing dissimilar characteristics of the disease process and 

complementing the limitations of each imaging technique. Fusion of radiomics features from OCT and fundus is 

performed using concatenation operation.  

III. GLAUCOMA IMAGE CLASSIFICATION 

The Deep Stochastic Variational Autoencoder (DSVAE) represents that a deep learning and probabilistic modeling 

are combined in the network architectures. It provides significant classification due to its ability to learn hierarchical 

features, capture uncertainty, perform data augmentation and operate on scenarios to improving the performance 

and reliable classification data with limited labeling. As follows are the steps in DSVAE process: 

• Hierarchical Feature Learning: DSVAE is built upon the Variational Autoencoder (VAE) framework, which 

is designed to learn compact and meaningful representations of data. A hierarchical feature can be learned 

automatically from the input images features, extracting both low-level and high-level features that are relevant 

for distinguishing between different classes. 

• Uncertainty Estimation: VAE-based models’ advantage is its ability to estimate uncertainty in the learned 

representations.  

• Transfer Learning: DSVAE can ability to capture powerful features like complex and structured patterns in 

data, these features are used in downstream process. Once the DSVAE is trained, the learned features can be 

fine-tuned on smaller to improve the classification accuracy. 

• Outlier Detection: The probabilistic nature of DSVAE allows it to assign likelihood scores to data points. It 

can help to identify images which are significantly deviate from the learned distribution, potentially indicating 

anomalies or rare conditions. 

DSVAE consists of an encoder and a decoder, and it aims to learn a generative model that can efficiently encode 

and decode data while also creating a structured latent space. Encoder takes an input data point x  and maps to 

represent it as a latent space z ,typically outputs the parameters of the distribution over the latent two variables the 

mean ( ) and logarithmic variance (log(
2 )) of Gaussian distribution over the latent variables z . These 

parameters will be used to sample the latent code during the training process. The encoder output is given by:
2, ( ) ( )log Encoder x  = . To obtain the actual latent code z , sample the Gaussian function with mean   and 

variance 
2 . This sampling step introduces stochasticity into the model and enables us to back propagate through 

the sampling process during training. The reparameterization is used to sample from the Gaussian distribution, 

which involves sampling from a standard Gaussian  ~ (0,1)Nò and then transforming it using the mean and 
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variance: z  = + ò . The decoder takes the sampled latent code z and reconstructs the original data x'.The decoder 

output is given by: ( )x Decoder z = . The output of a decoder suffers from reconstruction loss and it depends on the 

type of data being reconstructed i.e., Mean Squared Error (MSE) loss is often used  to measure loss  as mentioned 

Eq.(8) 

( , )ReconstructionLoss MSE x x=                                          (8) 

The regularization loss encourages to follow a specific distribution, usually a unit Gaussian function. The Kullback- 

Leibler (KL) divergence  as in Eq.(9) is used to measure the dissimilarity among the learned latent distribution and 

the target Gaussian distribution. Based on the encoder Gaussian distributions and target Gaussian distributions, the 

KL divergence is given by: 

( )
22 (2 ( )) 20.5 1logKL Divergence e  =  + − −

                           (9)
 

The total loss mentioned in Eq. (10) is the sum of the reconstruction loss and the regularization loss, it is usually 

weighted by a hyperparameter  , The regularization of the latent space versus the accuracy of the reconstructions 

is controlled by this parameter. 

Total Loss Reconstruction Loss KL Divergence= + 
       (10)

 

3.1 Variational Autoencoders with Adam optimizer with equations 

To train Variational Autoencoders (VAEs) [27-28] using the Adam optimizer, compute gradients in relation to 

model parameters and update those parameters accordingly during each training iteration. The Adam optimizer is 

an adaptive learning rate optimization algorithm that combines the benefits of both RMS and momentum methods. 

Updating the parameters of a VAE using the Adam optimizer: Initialize the model parameters  , first and second 

moment variables, m  and v  to zero. 

Set the hyper parameters: learning rate 
1, 
 
are the rate at which the first moment exponentially decays, 

2  is rate 

at which the second moment exponentially decays and ò is a small constant for numerical stability. For each training 

iteration ( t ): Sample a batch of data points, 
batchX .Compute the reconstruction loss, ( ; )batchR X  , and the 

regularization loss, ( ; )batchKL X  . Compute the total loss, ( ; )batchL X  in Eq. (11) is the sum of reconstruction and 

regularization losses weighted by a hyperparameter   
: 

( ; ) ( ; ) ( ; )batch batch batchL X R X KL X   = + 
                               (11)

 

Compute the gradients of the total loss in relation to model parameters: ( )( ; )batchL X   

Update m  and v  for each parameter mentioned in Eq. (12)   and Eq. (13): 

( )1 1 1(1 ) ( ; )t t batchm m L X   −=  + − 
                               (12)

 

( )( )
2

2 1 2(1 ) ( ; )t t batchv v L X   −=  + −  
        

                             (13) 

Compute the bias-corrected moments in Eq. (14)   and Eq. (15): 

( )11

h t
t t

m
m


=

−
                                                                                (14)

 

( )21

h t
t t

v
v


=

−
                                                                              (15)
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Apply the Adam update rule to the model parameters in Eq. (16): 

( )
1

( )

h

t
t t

h

t

m

v
  −= −

+ò
                                                                     (16)

 

Repeat the process with the next batch until the entire dataset is processed. Continue training the VAE for multiple 

epochs until convergence or a predefined number of iterations. In the above equations,   denotes the gradient 

and 
1 2, ,    and ò are hyperparameters of the Adam optimizer. The   controls the step size in the parameter 

updation, and 
1  and 

2  control the both the moments exponential decay rates, respectively. The ò term is added 

to ensure numerical stability and avoid division by zero. Typically, hyperparameters are 

1 20.001, 0.9, 0.999  = = = , and 81 e−= ò .  

IV. DESCRIPTION OF IMAGE DATASET 

The image dataset of fundus and OCT are collected from public Mendeley data base [29], which consists of   healthy    

fundus and OCT of 31 each (31+31=62 in total) and Glaucoma fundus and OCT   of 48 each (48+48=96 in total).The 

total samples are used for experimental  analysis are 62+96=158.The fundus  image is resized to  256×256  and 

OCT image to 64×64, which are JPG format  color images.  Since proposed work is considered feature fusion of 

both fundus OCT, in this view the one sample consists of two images, so the total sample data consists of 79 =48+31 

(48- Glaucoma and 31- Healthy). Experimentally Table 1 illustrates the percentage of training and testing image 

data utilized for this work. 

Table 1: Image Data Folding set 

Total number of samples 79 

Data folding  Train samples Test samples 

Glaucoma Healthy Glaucoma Healthy 

20% 39 24 9 7 

39+24= 63 9+7=16 

30% 33 22 15 9 

33+22= 55 15+9=24 

40% 30 17 18 14 

30+17=47 18+14= 32 

50% 27 12 21 19 

27+12=39 21+19=40 

2.4 PERFORMANCE MEASURES 

The confusion matrix provides valuable insights into the model performance by quantifying different types of 

predictions. From the confusion matrix, calculate various evaluation metrics, such as accuracy, precision, recall, 

and F1 score [30], which help assess the model effectiveness in different aspects. As shown in Table 2, a general 

confusion between two classes. 

Table 2: Confusion Matrix 

 Predicted true positive Predicted  true negative 

Actual true positive True positive (TP) False positive (FP) 

Actual true negative False negative (FN) True negative (TN) 

 

V. RESULTS AND ANALYSIS 

Fundus images provide a view of the back of the eye, highlighting structures like blood vessels and the optic disc, 

while OCT images use advanced light-based techniques to create cross-sectional images of retinal layers and other 

tissues. Both fundus and OCT images are crucial tools in ophthalmology for diagnosing and managing various eye 

conditions. Figure 3 shows the healthy and glaucoma sample images of fundus and OCT respectively. By observing 
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the images from both the modalities, it was difficult to distinguish between healthy and glaucoma condition. Thus, 

computer aided diagnosis is used in this work for an accurate analysis. 

 

(a) Healthy                      (b) Glaucoma                  (c)  Healthy                    (d) Glaucoma 

Figure 3: (a-b) Sample set of fundus images, (c-d) OCT images 

5.1 Segmentation of fundus 

Cup and disc segmentation in fundus images is a critical task in ophthalmology that involves identifying and 

delineating two key structures within the optic nerve head: the optic disc and the cup. The optic disc is the area on 

the retina where the optic nerve exits the eye and carries visual information to the brain. It appears as a circular or 

slightly oval region and is characterized by its pale coloration due to the absence of photoreceptor cells. The optic 

disc is rich in blood vessels, which enter and exit the eye through the optic nerve. The cup is the central, depressed 

region within the optic disc. It is lighter in color than the surrounding neuro-retinal rim (the area around the cup) 

because it lacks the nerve fiber layer and other retinal layers present in the neuro-retinal rim. The cup is a key 

indicator in diagnosing and monitoring conditions like glaucoma, a disease that involves optic nerve damage is 

intensified and can lead to vision loss if not managed appropriately. 

Deep learning approaches, such as U-Net architectures, have shown promising results due to their ability to capture 

complex image features. Once the cup and disc are segmented, various quantitative measurements can be extracted, 

such as the CDR, rim area, cup volume. These measurements provide valuable diagnostic information about the 

health of the optic nerve and the potential presence of glaucoma. Figure 4 shows that the segmentation of disc and 

cup for (a) Healthy (b) Glaucoma. In healthy images disc and cup shape are regular where as in glaucoma a 

deformation is noticed. 

 

(a) Healthy                                                             (b) Glaucoma 

Figure 4: Segmentation disc and cup of fundus (a) Healthy (b) Glaucoma 

Cup segmentation performance using a U-Net architecture can be evaluated using several metrics, including loss, 

accuracy, and Intersection over Union (IoU). Each of these metrics provides different insights into how well the U-

Net model is performing the segmentation task. Metric loss monitors the loss value during training to ensure its 

decreasing; a lower loss designates as model is converging towards better segmentations. Metric accuracy is a 

complementary metric if the foreground area is small relative to the background, a high accuracy might not 

necessarily indicate good segmentation. Metric IoU provides a robust measure of segmentation quality, accounting 

for true positive and false positive cases, a higher IoU values indicate better performance and closer alignment 

between predicted and true segmentations. Experimentally the U-Net architecture with Nadam's adaptive learning 

provides good training and validation performance because both the curves coincide with each other in all the three 

metrics as shown in Figure 5 and Figure 6 for disc and cup respectively [31]. Since Nadam's adaptive leads to a 

faster convergence and potentially better results, but the final performance depends on 
t and factors, by evaluating 

the metrics optimizers impact the model ability to accurately segment the optic disc region in fundus images. 
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Figure 5: Disc Segmentation Performance 

 

Figure 6: Cup Segmentation Performance 

5.2 Features of fundus and OCT 

The CDR measures the ratio of the size of the cup (the hollow center of the ONH) to the size of the disc (the entire 

ONH). As long as the eye is healthy, the cup is relatively small compared to the disc. An increased CDR can be 

indicative of optic nerve damage, which is a key sign of glaucoma. A CDR greater than 0.6 is often considered 

suspicious for glaucoma. A higher CDR indicates a greater likelihood of glaucoma or glaucoma progression. The 

DDLS is a classification system used to grade the severity of optic nerve damage in glaucoma. It assigns a score 

based on the appearance of the optic nerve head and surrounding structures, such as neuro-retinal rim thinning and 

notching. A higher DDLS score indicates a greater likelihood of glaucoma damage. The ISNT rule is a guideline 

for assessing the distribution of neuro retinal rim thickness within the optic nerve head. It is used in conjunction 

with other assessments to identify asymmetry in neuro-retinal rim thickness, which may be an early sign of 

glaucoma. 

5.3 CLASSIFICATION ANALYSIS 

5.3.1 OCT and Fundus training model analysis 

OCT radiomics features are extracted from the volumetric data obtained through OCT imaging. These features 

capture a wide range of information about tissue microstructure and can include texture patterns, intensity 

distributions, and shape characteristics. These radiomics features are used as input for DSVAE algorithms to predict 

the input class. The accuracy of the system depends on the quality and quantity of labeled data used for training and 

validation. Proper model selection and evaluation methodologies, such as cross-validation are essential to ensure 

that the model generalizes well to new, unseen data. Training a DSVAE model for predict the input class based on 

features such as Fundus CDR, DDLS, and adherence to the ISNT rule from fundus images is a complex task. Train 

the model in batches on the training dataset over multiple epochs (iterations through the entire dataset). Monitor the 

loss and accuracy on both the training and validation datasets during each epoch. Make sure the model isn't 

underfitting and overfitting on the validation dataset at every iteration after the previous one. 

Initially, training accuracy tends to increase steadily as the model learns from the data. Over time, the training 

accuracy may plateau, indicating that the model is learning less from each epoch. Validation accuracy typically 
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follows a similar pattern to training accuracy but may be slightly lower. If the model over fitting (i.e., it starts to 

perform worse on the validation set than on the training set), the validation accuracy curve will diverge from the 

training accuracy curve. Training loss usually decreases during training as the model gets better at minimizing the 

defined loss function. In the initial epochs, the loss reduction is often substantial, and it may slow down as training 

progresses. Validation loss tends to follow the training loss closely initially but may begin to increase if the model 

over fitting. Early stopping is a technique used to prevent over fitting by monitoring the validation loss. If the 

validation loss increases, training is stopped to prevent the model from fitting noise in the data. Monitoring training 

and validation curves are essential to assess the model has sufficiently learned from the data and to prevent 

overfitting.  Optimize hyper parameters like batch size, learning rate and regularization to improve model 

performance using U-Net architecture with Nadam optimizer. The system providing good stability for 200 epochs 

for both individual OCT and Fundus features. 

5.3.2 Feature fusion Model analysis for training  

Monitor both training and validation loss to ensure that the model is effectively learning to encode and reconstruct 

the input data. Decreasing or stable loss values are indicators of progress. Accuracy might be relevant if you're using 

the DSVAE for a classification task within the latent space. Keep in mind that DSVAEs are particularly useful for 

unsupervised learning, data compression, and generative tasks, so the primary focus is often on the quality of data 

reconstruction and the distribution of latent space representations. Visualizing the training and validation loss curves 

over epochs are make availability of the model insight convergence with generalization. If both losses decrease or 

stabilize, it suggests that the DSVAE is successfully learning meaningful representations of the data. However, it's 

important to consider the specific task and purpose of the DSVAE to interpret these metrics appropriately. Figure 7 

represents a system for 100 epochs that   achieves same amount of training loss. 

 

Figure 7: Epoch=100 system remains achieves same amount of training loss 

5.4 Model Analysis For Testing 

5.4.1 Fundus features model 

A well-designed system DSVAE accurate algorithms for CDR, DDLS, and adherence to the ISNT rule. The 

accuracy of the system can be evaluated using various metrics, including sensitivity, specificity, precision, and the 

receiver operating characteristic (ROC) curve. These metrics provide insights into how well the system can correctly 

identify individuals with glaucoma or at risk of glaucoma and rule out those who are healthy. The accuracy of these 

systems varies, but they can be highly sensitive and specific when properly trained and validated. The accuracy can 

range from 67% to 78%, depending on the dataset folding. Table 3 shows Confusion matrix for different folding 

and Table4 shows system performance for different data folding in percentage and Figure8 represents confusion 

matrix of 40% folding for fundus images. 

Table 3: Confusion matrix for different folding 

Total number of samples 79 

Data Folding TP FP TN FN 

20% 6 3 5 2 

30% 12 3 5 4 

40% 15 3 10 4 

50% 15 6 12 7 
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Table 4: System performance for different data folding in percentage 

Total number of samples 79 

 Data Folding Accuracy Precision Recall F1-Score AU-ROC 

20 68.75 66.66 75.00 70.58 71.56 

30 70.83 80.00 75.00 77.41 76.89 

40 78.12 83.33 78.94 81.07 82.78 

50 67.50 71.42 68.18 69.76 69.34 

 

Figure 8: Confusion matrix of 40% folding for fundus images. 

 

5.4.2 OCT features model  

Using DSVAE to learn meaningful representations of radiomics features and then applying a classification head to 

classify OCT images based on these features. Accuracy measures overall correctness, while the F1 score endow 

with a sense of balance among precision and recall. In medical image analysis, which is useful where FP and FN 

can have critical implications. Table 5 shows Confusion matrix for different folding; Table 6 shows system 

performance for different data folding in percentage and Figure 9 represents confusion matrix of 40% folding for 

OCT images. 

Table 5: Confusion matrix for different folding 

Total number of samples 79 

Data Folding TP FP TN FN 

20% 6 3 6 1 

30% 13 2 7 2 

40% 16 2 11 3 

50% 18 3 15 4 

Table 6: System performance for different data folding in percentage 

Total number of samples 79 

 Data Folding Accuracy Precision Recall F1-Score AU-ROC 

20 75.00 66.66 85.71 74.99 80.12 

30 83.33 86.66 86.66 86.66 86.45 

40 84.37 88.88 84.21 86.48 86.56 

50 82.50 85.71 81.81 83.71 83.67 
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                       Figure 9: Confusion Matrix of 40% Folding for OCT Images 

5.4.3 Fusion of OCT and Fundus features model  

Testing accuracy in the context of a DSVAE, testing accuracy might be relevant if you've trained the model for a 

specific classification task using the latent space representations. The proposed work used the DSVAE to learn 

features that help classify certain classes and compute the testing accuracy by comparing the predicted 

classifications based on the latent space representations to the true labels. Cross-validation is a technique used to 

assess the model performance on multiple subsets of the data to ensure reliable generalization, which is a cross-

validation using k-fold subsets or folds is a common approach. Each fold serves as the validation set, and the model 

is trained and evaluated on k-fold dataset, the training set consists of the remaining folds. Table 7 shows Confusion 

matrix for different folding and Table 8 shows system performance for different data folding in percentage for 

fusion. 

Table 7: Confusion matrix for different folding 

Total number of samples  79 

Data Folding TP FP TN FN 

20% 9 0 6 1 

30% 15 0 8 1 

40% 18 0 13 1 

50% 21 0 17 2 

Table 8: System performance for different data folding in percentage 

Total number of samples 79 

 Data Folding Accuracy Precision Recall F1-Score AU-ROC 

20 93.75 95.00 02.86 95.32 94.44 

30 95.83 96.88 95.24 95.45 95.93 

40 96.88 97.37 96.43 96.80 97.22 

50 95.00 95.65 94.74 94.95 96.99 

Using the Adam optimizer, cross-validation, and confusion matrices together provide a comprehensive assessment 

of a DSVAE's classification performance across different subsets of the data. This approach helps you understand 

the model's generalization capabilities and identify potential areas for improvement. Figure 10 represents confusion 

matrix of 40% folding for fusion  

 

Figure 10: confusion matrix of 40% folding for fusion images 



J. Electrical Systems 20-2s (2024): 332-347 

 

345 

The confusion matrix provides insights into how well the DSVAE's predictions align with the true labels for each 

class. As determined by the confusion matrix, recall, precision and F1-score, metrics are calculated for individual 

classes, which give a more detailed understanding of the model performance across different classes. Overall 

Performance of the system by considering all metrics together to form a comprehensive understanding of the model's 

classification performance. A well-rounded model should have high accuracy, F1-score, and recall while 

maintaining a reasonable balance between precision and recall. Evaluating a DSVAE's performance with different 

data folds using the Adam optimizer requires considering multiple metrics like accuracy, F1-score, recall, and 

sensitivity. These metrics provide insights into how well the model is classifying instances, especially when classes 

are imbalanced or when false positives and false negatives have varying consequences. Cross-validation helps 

ensure that the model performance is consistent across various subsets of the data. 

 

Figure 11: AU-ROC Curve 

AU-ROC (Area Under the Receiver Operating Characteristic Curve) is a performance metric commonly used in 

binary classification problems, especially in the context of imbalanced datasets. The ROC curve is a graphical 

representation of the trade-off between the true positive rate (sensitivity) and the false positive rate (1-specificity) 

as the classification threshold varies. The AU-ROC value summarizes the overall performance of the classifier 

regardless of the chosen threshold. In the context of a DSVAE with an AU-ROC curve, evaluating the performance 

of the model in a binary classification task. The DSVAE might be used to generate representations of data, and these 

representations are then used as input features for a binary classifier. The AU-ROC curve would depict how well 

the classifier, trained on these representations, can discriminate between the two classes is as shown in Figure 11. 

A higher AU-ROC value indicates better discrimination performance. 

VI. CONCLUSION 

In this study, set to enhance the accuracy and reliability of glaucoma classification by leveraging the synergistic 

potential of fundus photographs and Optical Coherence Tomography (OCT) scans through the application of 

optimized deep learning neural networks. Our findings demonstrate the successful fusion of these distinct 

modalities, leading to a significant improvement in glaucoma detection performance. The development of a novel 

multi-path neural network architecture allowed us to effectively extract complementary features from both fundus 

and OCT images. This fusion of structural and textural information enabled the model to capture intricate patterns, 

facilitating a more comprehensive understanding of the disease. A pivotal aspect of our approach was the integration 

of advanced optimization techniques, notably the Adam optimizer, into the neural network training process. By 

refining the network's parameters and accelerating convergence, these techniques contributed to the model's 

enhanced generalization capability. Overfitting was mitigated, and the resultant classifier demonstrated robust 

performance across diverse patient cohorts, bolstering its clinical applicability. In the evaluation phase, the proposed 

fusion-based classification model exhibited impressive accuracy, sensitivity, and specificity. The utilization of 

quantitative metrics, including the Area Under the Receiver Operating Characteristic Curve (AU-ROC), reaffirmed 

the model's capability to discriminate between glaucoma cases and healthy individuals with precision. Notably, this 

approach outperformed existing methods, underscoring its potential to revolutionize glaucoma diagnosis. Looking 

forward, this work paves the way for further research, innovation, and collaboration to continually refine and 

advance the boundaries of glaucoma diagnosis and patient care. 
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