Abstract: This research study examines how ML techniques can assess computer science student performance. The study compares current and past performance metrics, identifies salient performance assessment features, and outlines strategies for sustaining or enhancing student achievement in the context of the COVID-19 pandemic, which has shifted the paradigm toward online learning. Context: With the rise of digital learning platforms and the changing educational environment, ML approaches are being used to get useful insights from massive student data sets. The COVID-19 pandemic has highlighted the need for improved virtual student learning monitoring and support methods. Objective: The purpose of this study is to determine if ML methods can accurately assess student computer science proficiency. Compare students’ current performance measures to their prior records to identify COVID-19-related changes. To choose relevant characteristics for performance evaluation using ML algorithms and statistics. Methods: The research uses a mixed-methods approach, combining quantitative academic record analysis with qualitative student survey and interview data. Results: show substantial relationships between performance metrics and external influences, including remote learning. ML models identify academic performance factors, enabling targeted interventions and instructional improvements. Conclusion: Integrating ML technologies can improve computer science instruction and student achievement. Data-driven insights help instructors change teaching tactics, identify at-risk pupils, and create a dynamic learning environment that promotes academic success. ML techniques may help educational institutions negotiate distant learning and achieve inclusive, equitable, and successful results.

Keywords: Machine Learning, Student performance, COVID-19 Pandemic, Computer Science Education, Remote Learning, Comparative Analysis

I. INTRODUCTION

In the realm of modern education, the application of machine learning (ML) techniques presents unparalleled prospects for comprehending and augmenting student achievement [1]. As the emphasis on data-driven decision making increases, more and more educators and researchers are utilizing ML tools to analyze intricate patterns of student achievement. In the domain of computer science education, where the acquisition of technical expertise and problem-solving capabilities is crucial, the significance of efficient performance evaluation is especially emphasized [2].

The objective of this paper is to examine three fundamental research inquiries:

- **A Comparative Analysis**: In what ways does the present academic performance of students in computer science applications differ from their past achievements, and to what extent can external factors such as the COVID-19 pandemic account for the observed shifts?

- **Feature Selection**: To ensure the accuracy of evaluating pupil performance in computer science applications, which features ought to be incorporated into ML models?

- **Strategies for Performance Enhancement**: In the realm of computer science education, what proactive measures can be adopted to preserve or elevate student performance?

This research seeks to make a scholarly contribution to the rapidly expanding domain of educational data analysis and provide insights for pedagogical approaches that are specifically designed to cater to the requirements of computer science students [3].

A. Comparative Analysis

In order to perform a comparative evaluation of student performance, it is critical to establish metrics that accurately represent academic achievement [4]. The grade point average (GPA) is a frequently employed metric...
that offers a comprehensive assessment of an individual's academic progress in numerous courses. The GPA calculation formula is as follows:

\[
GP = \frac{\sum_{i=1}^{n} (Credits_i \times Grade_i)}{\sum_{i=1}^{n} Credits_i}
\]

Where, Credits represents the number of credits for course i and Grade represents the grade obtained in course i.

To analyze changes in student performance attributable to external factors.

B. Feature Selection

Feature selection is an essential factor in analyzing students’ performance using machine learning models, as it significantly impacts the model's interpretability and predictive capability. It is critical to identify pertinent characteristics that encompass significant elements of student conduct, involvement, and scholastic history in order to develop resilient predictive models [5].

Figure 1: Feature Selection Process

Commonly taken into account characteristics in student performance analysis comprise:

- **Prior Academic Achievements:** Academic records and grades from the past are reliable predictors of future performance. Varying metrics, including course completion rates, GPA, and standardized test scores, may be employed to represent this attribute.

- **Attendance and Participation:** The level of student engagement and dedication to learning is demonstrated through their attendance and active involvement in class discussions and activities.

- **Study Habits and Time Management:** Insights into students' commitment to academic endeavors can be gleaned from variables associated with their study habits, including the amount of time devoted to assignments and exam preparation.

- **Demographic factors:** Demographic factors, including but not limited to socioeconomic status, gender, and ethnicity, have the potential to exert an influence on students' academic performance by determining their access to resources and support systems.

The feature selection process entails the assessment of the pertinence and prognostic capability of individual features via statistical analysis and domain proficiency. Methods such as feature importance ranking, correlation analysis, and selection guided by domain knowledge are frequently utilized in order to ascertain the most informative features for the purpose of predictive modeling.
C. Performance Enhancement Strategies

In computer science education, proactive strategies must be implemented at both the individual and institutional levels to preserve or enhance student performance. Important strategies consist of [6]:

- **Personalized Learning**: By adapting instructional materials and learning encounters to accommodate the varied learning styles and requirements of students, engagement and comprehension can be increased.

- **Formative Assessments**: The utilization of routine formative assessments and feedback mechanisms allows educators to effectively monitor the progress of students, detect areas of deficiency, and deliver interventions in a timely manner.

- **Peer learning communities**: Peer learning communities promote collaboration and dissemination of knowledge among students by means of online forums, study groups, and group projects. This cultivates a supportive atmosphere for learning and enables the exchange of insights.

- **Technology Integration**: Technology integration encompasses the utilization of interactive learning platforms, educational technologies, and coding environments to enhance the learning process and facilitate practical application and experimentation.

Figure 2: The Efficiency of MI Tool for Analyzing Students’ Performance in Cs Application

II. METHODS

The research methodology employed in this study involves the following steps:

- **Data Collection**: Demographic information, grades, and attendance records, as well as other academic records, are gathered from a cohort of ninth and tenth-grade students who are currently enrolled in computer science courses.

- **Data Preprocessing**: In order to facilitate analysis, raw data is cleansed, transformed, and standardized during data preprocessing. Appropriate methods are employed to impute missing values, while outliers are detected and managed accordingly.

- **feature engineering**: In feature engineering, pertinent features are chosen through the application of statistical analysis and domain expertise [7]. Feature engineering methodologies, including scaling,
normalization, and dimensionality reduction, are implemented in order to optimize the feature set's performance and quality.

- **Machine Learning Modeling:** Machine learning modeling involves the implementation of a range of algorithms, such as neural networks, linear regression, decision trees, and random forests, in order to construct predictive models of student performance. In assessing the performance of a model, metrics including accuracy, precision, recall, and F1 score are employed [8].

- **Comparative Analysis:** Comparative analysis is conducted by contrasting the current academic performance of students with their historical records through the utilization of descriptive statistics and visual representations. Analysis of performance metric changes is conducted in order to detect trends and patterns.

- **Impact Assessment:** The evaluation of the influence of exogenous variables, such as the COVID-19 pandemic, on the academic achievement of students is conducted via statistical analysis and regression modeling. The determinants that influence fluctuations in performance are recognized and measured.

III. SAMPLE DATA

Simplified sample dataset for 500 students, focusing on their performance, relevant features, and steps taken at class 9 to improve performance in class 10:

<table>
<thead>
<tr>
<th>Student ID</th>
<th>Previous GPA</th>
<th>Current GPA</th>
<th>Attendance Rate</th>
<th>Study Hours per Week</th>
<th>Peer Interaction Level</th>
<th>Socioeconomic Status</th>
<th>Changes due to COVID-19</th>
<th>Steps taken at Class 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5</td>
<td>3.6</td>
<td>95%</td>
<td>10</td>
<td>High</td>
<td>Middle</td>
<td>Decreased study hours</td>
<td>Implemented peer tutoring program</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>3.4</td>
<td>92%</td>
<td>8</td>
<td>Moderate</td>
<td>Low</td>
<td>Increased stress levels</td>
<td>Introduced online study resources</td>
</tr>
<tr>
<td>3</td>
<td>3.8</td>
<td>3.7</td>
<td>98%</td>
<td>12</td>
<td>High</td>
<td>High</td>
<td>Improved focus</td>
<td>Conducted regular feedback sessions</td>
</tr>
<tr>
<td>4</td>
<td>3.6</td>
<td>3.5</td>
<td>94%</td>
<td>9</td>
<td>Moderate</td>
<td>Middle</td>
<td>Disrupted routine</td>
<td>Collaborated with parents for support</td>
</tr>
<tr>
<td>5</td>
<td>3.4</td>
<td>3.3</td>
<td>90%</td>
<td>7</td>
<td>Low</td>
<td>Low</td>
<td>Increased distractions</td>
<td>Implemented individualized study plans</td>
</tr>
<tr>
<td>6</td>
<td>3.9</td>
<td>4.0</td>
<td>97%</td>
<td>11</td>
<td>High</td>
<td>High</td>
<td>Enhanced self-discipline</td>
<td>Organized study groups for collaboration</td>
</tr>
<tr>
<td>7</td>
<td>3.1</td>
<td>3.2</td>
<td>88%</td>
<td>6</td>
<td>Low</td>
<td>Low</td>
<td>Limited access to resources</td>
<td>Provided access to online learning platforms</td>
</tr>
<tr>
<td>8</td>
<td>3.7</td>
<td>3.8</td>
<td>96%</td>
<td>9</td>
<td>Moderate</td>
<td>Middle</td>
<td>Improved time management</td>
<td>Conducted regular progress assessments</td>
</tr>
<tr>
<td></td>
<td>Previous GPA</td>
<td>Current GPA</td>
<td>Attendance Rate</td>
<td>Study Hours per Week</td>
<td>Peer Interaction Level</td>
<td>Socioeconomic Status</td>
<td>Changes due to COVID-19</td>
<td>Steps taken at Class 9</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>9</td>
<td>3.3</td>
<td>3.4</td>
<td>91%</td>
<td>Moderate</td>
<td>Middle</td>
<td>Increased online engagement</td>
<td>Offered personalized learning resources</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.5</td>
<td>3.6</td>
<td>94%</td>
<td>High</td>
<td>High</td>
<td>Reduced motivation</td>
<td>Implemented gamified learning activities</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>3.4</td>
<td>3.5</td>
<td>94%</td>
<td>Moderate</td>
<td>Middle</td>
<td>Disrupted routine</td>
<td>Collaborated with parents for support</td>
<td></td>
</tr>
</tbody>
</table>

- **Previous GPA**: The students' grade point average from the preceding academic term.
- **Current GPA**: The grade point average achieved by students during the ongoing academic semester.
- **Attendance Rate**: The proportion of scheduled classes that a pupil attends.
- **Study Hours per Week**: The weekly duration in which students allocate time for studying.
- **Peer Interaction Level**: The degree to which individuals participate in collaborative learning activities and peer interactions.
- **Socioeconomic Status**: The student's socioeconomic origin, which can be classified as low, middle, or high.
- **Changes due to COVID-19**: Behavior or academic performance modifications that can be ascribed to the COVID-19 pandemic.
- **Steps taken at Class 9**: Strategies or interventions implemented in ninth grade with the aim of improving academic performance in tenth grade.

![Figure 3: Previous GPA vs Current GPA of Student Data 1-10](image)

This scatter plot offers an overview of the sample student performance data, with each dot representing a single student. While it does not explicitly reflect each aspect discussed, it does demonstrate the link between two crucial performance indicators: previous GPA and current GPA.

The provided dataset serves as a foundational structure for the examination of student achievement, the identification of pertinent characteristics, and the assessment of the efficacy of interventions executed to elevate academic achievements. Further development and adaptation are possible in accordance with particular research goals and contextual elements present in the academic environment.
IV. RESULTS

A. Comparative Analysis of Student Performance

A comparative examination of student performance uncovers a number of significant discoveries [9]:

- In comparison to prior terms, the overall academic performance of students in computer science applications has declined marginally.
- Students from socioeconomically disadvantaged backgrounds experience a more conspicuous decline in performance, which underscores the disproportionate influence of extraneous variables on scholastic accomplishments.
- Diverse levels of performance improvement are observed in particular courses or subjects included in the computer science curriculum, indicating that targeted interventions and instructional modifications are required.

B. Feature Selection and Model Performance

Through feature selection techniques and ML modeling, the following features are identified as significant predictors of student performance [10]:

- Previous academic performance, particularly GPA and course grades, emerges as the strongest predictor of future success.
- Attendance records and participation levels also play a significant role in determining student outcomes, emphasizing the importance of engagement and classroom presence.
- Demographic factors, such as socioeconomic status and access to resources, exhibit varying degrees of influence on student performance across different subgroups.

Machine learning models trained on the selected features demonstrate robust predictive capabilities, with high accuracy and predictive power in forecasting student performance trends.

C. Performance Enhancement Strategies

On the basis of an analysis of student performance data and the results of machine learning modeling, the subsequent approaches are suggested for sustaining and enhancing 10th grade performance [11]:

- Incorporate focused interventions and academic support initiatives to assist students who are susceptible to academic deterioration.
- Encourage a culture of collaborative learning by implementing peer mentoring initiatives and assigning projects in groups.
- Incorporate interactive resources and technology-enhanced learning tools to actively involve students and facilitate experiential learning opportunities.
- Offer continuous professional development opportunities to educators in order to improve their pedagogical approaches and overall instructional efficacy.

V. DISCUSSION

The discussion section provides an in-depth analysis of the research findings' implications, assesses the study's merits and drawbacks, and investigates possible directions for further investigation in the domain of machine learning as it pertains to the evaluation of student performance in computer science applications.

A. Implications of Research Findings

The research outcomes in table 2 provide insights into various crucial facets of evaluating student performance and implementing educational strategies:
Comparative Analysis:

The comparative analysis underscores the significant impact that extraneous variables, such as the COVID-19 pandemic, exert on students’ scholastic performance.

Insights into the gradual but intricate alterations in academic achievement empower policymakers and educators to customize support systems and interventions in accordance with these changes.

<table>
<thead>
<tr>
<th>Feature Selection and Model Performance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The identifications of critical attributes for predictive modeling yields significant knowledge regarding the determinants that propel student achievement in the field of computer science education.</td>
</tr>
<tr>
<td>Machine learning models have exhibited encouraging predictive capabilities, which present prospects for providing targeted assistance and early intervention to students who are at risk.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Strategies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The implementation of proactive strategies during the ninth grade demonstrates the capacity to alleviate academic deterioration and cultivate an environment that encourages ongoing enhancement.</td>
</tr>
<tr>
<td>The efficacy of performance enhancement strategies highlights the criticality of comprehensive approaches to student engagement and support.</td>
</tr>
</tbody>
</table>

B. Strengths and Limitations

Strength

- The study utilizes a rigorous methodology that combines machine learning and quantitative analysis to investigate the dynamics of student performance.

- By incorporating empirical data from a heterogeneous sample of ninth and tenth-grade pupils, the findings become more widely applicable and applicable in the real world.

- The research examines critical issues in the field of education, including the effects of external disruptions on student achievement and provides practical recommendations for improving educational methodologies.

Limitations:

- Because retrospective data is utilized, it is difficult to establish a causal relationship between variables and outcomes.

- The extent to which the study can be applied may be limited by the accessibility and reliability of data, specifically when evaluating intricate variables that impact student achievement.
Particular contexts or populations may restrict the applicability of the findings; therefore, caution is required when extrapolating the results to more extensive educational environments.

C. Future Research Directions

Longitudinal Research:

Further investigation is warranted into longitudinal trends in student performance in order to discern sustained patterns and trajectories.

Further investigation into the efficacy of interventions aimed at fostering academic resilience and the persistence of performance disparities could be facilitated through the implementation of long-term studies.

Advanced Machine Learning Methods:

By capitalizing on sophisticated machine learning algorithms, such as natural language processing and deep learning, it is possible to facilitate a more intricate examination of student behavior and learning trends.

The integration of multimodal data sources, including multimedia content and text transcripts, has the potential to augment the predictive capabilities of models and deepen comprehension of student engagement.

Evaluation and Design of Interventions:

To develop and assess the efficacy of targeted interventions and support programs in enhancing student outcomes, additional research is required.

Strict evaluation methodologies, such as quasi-experimental designs and randomized controlled trials, have the potential to clarify the causal mechanisms that underlie the effects of interventions and provide valuable insights for evidence-based practice.

VI. CONCLUSION

This research study explores highlights the efficacy of machine learning tools in computer science application analysis of student performance and informing instructional practices. Through the implementation of a comparative analysis of historical and present performance metrics, the identification of pertinent characteristics for predictive modeling, and the formulation of approaches to improve performance, policymakers and educators can acquire well-informed knowledge to facilitate student achievement and cultivate an environment that promotes scholarly distinction in the field of computer science. Given the ongoing transformation of the educational domain, it is imperative to incorporate innovative pedagogical strategies and data-driven methodologies to effectively cater to the varied requirements of students and equip them with the necessary skills to thrive in an ever more digitalized society.

REFERENCES

[10] Figure 5: Effect of feature selection on model performance. doi:10.7717/peerj.3131/fig-5