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Abstract: - Chronic kidney disease (CKD), a consequential health issue that can deeply affect an individual's overall wellness, can be 

initiated by either kidney cancer or a gradual reduction in kidney function. As the chronic disease advances, it can reach a critical stage 

where only dialysis or surgery can save lives. Halting its progress becomes crucial. CKD patients also face a heightened risk of premature 

death. Early detection of associated conditions poses a challenging task for healthcare professionals aiming to prevent their onset. A unique 

deep learning model is presented in this work for the prediction of CKD. Many existing CKD prediction models have the drawbacks of 

producing less accuracy, mispredicting, utilizing more computation time, and using low-quality datasets or data with noise and missing 

values, leading to misprediction. So it is necessary to develop new techniques that give high predictions with less computation time. The 

objective of this research work is to build improved ResNet models for the prediction of chronic kidney disease and evaluate their 

performance in comparison to other cutting-edge machine learning and deep learning methods. This research work developed ResNet 

models such as improved ResNet 152v2 with inception, improved ResNet 101, and improved ResNet50 models that produced 99.90%, 

96.53%, and 93.968% accuracy, respectively. The proposed ResNet models for CKD prediction will be useful to nephrologists and other 

medical professionals. 

Keywords: Deep learning, ResNet, chronic kidney disease, prediction 

 

 
1 1Department of Computer Science & Engineering,  , Chandigarh University, Punjab , 140413,India . 

ORCID ID: https://orcid.org/0000-0003-2082-9900  Email ID: vetrigold@gmail.com 

2 Department of Cyber Security, Bapatla Engineering College, Andhra Pradesh, 522102, India. 

Email ID: himabindu.r@becbapatla.ac.in 

3Department of Mathematics, Chandigarh University, Mohali, 140413, India. 

Email ID: mphilsaranya@gmail.com 

4Department of Computer Science & Engineering, Chandigarh University, Mohali, 140413 

Email ID: neha.arya35@gmail.com 

5Department of Computer Science & Engineering, KG Reddy College of Engineering and Technology,Telangana.,India. 

Email ID: pnrshkumar@gmail.com 

6Department of Computer Science & Engineering, KG Reddy College of Engineering and Technology, Telangana,India. 

Email ID: azramd4@gmail.com 

7Department of CSE,Koneru Lakshmaiah Education Foundation,Vaddeswaram,Guntur,Andhra Pradesh,India. 

Email ID: ashok.bekkanti@gmail.com 

8Faculty of Science and technology,JSPM University, Pune. 

Email ID: kul.a.pws@gmail.com 

Copyright © JES 2024 on-line : journal.esrgroups.org 

https://orcid.org/0000-0003-2082-9900
mailto:kul.a.pws@gmail.com


J. Electrical Systems 20-2s (2024): 165-183 

 

166 

1. INTRODUCTION 

When affected by chronic kidney disease, or CKD, the kidneys undergo a decline in their ability to efficiently filter 

blood. The main role of the kidneys is to remove surplus water and toxins from the blood [1].The impacted 

population is 500 million, of which 78% (387.5 million) reside in LMICs (low- to middle-income nations) [2][3]. 

In the world, non-communicable chronic kidney disease (CKD) has considerably increased patient admission rates, 

mortality, and morbidity [2].CKD can be attributed to a range of illnesses, Including, yet not confined  to diabetes, 

high blood pressure, and heart disease.  

CKD development is influenced not only by major health issues but also by a person's age and gender [4]. If one or 

both of your kidneys are not functioning correctly, we might encounter a variety of symptoms such as back pain, 

abdominal discomfort, diarrhea, elevated body temperature, nosebleeds, skin rashes, and vomiting [5].Many patients 

with CKD do not become aware of their condition until it is too late because It often remains asymptomatic until it 

has advanced to a more severe stage. During its initial phases, CKD frequently remains asymptomatic, primarily 

because the human body can generally tolerate a substantial reduction in kidney function. is estimated that 0.4% of 

persons have CKD in stages4 or 5. A multifaceted pharmaceutical strategy used to treat people with established 

CKD and renal insufficiency with the goal of reducing all the risk variables linked to progression is likely to decrease 

progression in most cases and even stop it in others[7][8]. Due to the substantial and increasing incidence of CKD, 

it will be essential to create new models of healthcare delivery in the future that coordinate the care of nephrologists, 

other doctors, and other healthcare professionals. Additionally, it will be essential to assess the affordability of 

testing programmes for populations that are most at risk of developing CKD [9]. A kidney transplant or dialysis is 

likely to be required at some point. Typically, laser point energy that functions in a superposition area is created 

using machine vision. Convolutional networks incorporating deep learning (DL) concepts are employed in the 

models in this field [10]. Convolutional neural networks (CNN) and deep learning(DL) are employed to handle the 

low-resolution image issue in an effort to advance the quality of the image and its clarity[11]. If it were possible to 

identify acute renal disease within the human body using machine learning (ML) techniques, it would be 

advantageous to address this problem[6][12]. Some recent studies try to predict the presence of CKD utilizing 

sequence models like naive Bayes and artificial neural network (ANN) models like C4.5. Particle swarm 

optimization (PSO) is utilized to diminish the computation time [13].Renal disease is one of the life-threatening 

ailments that are being studied  [14][15]. Ebrahime et al.[16] Suggested classification algorithms utilizing recursive 

feature elimination techniques for the prompt detection of CKD. This algorithm performs well on the dataset, which 

has only 400 samples. Polat et al.[17] suggested a method employing an SVM classifier in 2017 to make an early 

diagnosis of CKD . The importance of their research was highlighted by the use of feature selection methods to 

diminish the dataset's complexity. The wrapper and filter approaches were the two feature selection techniques used. 

The Best Technique for choosing Features in Search Engines using the SVM classifier and the filtered subset 

evaluator produced a 98.5% accuracy rate. This showed that feature selection techniques can have a big impact on 

how well a model performs [18][19]. 

In contrast to manual visual interpretation, artificial intelligence (AI), DL algorithms, and ML have demonstrated 

greater performance in the diagnosis of diseases just  as COVID-19, Breast cancer, kidney disease,  and  diabetic  

retinopathy [2][20][21][22]. Several data augmentation techniques were used to create additional data with 

variations and kidney dimension observations by cutting out the kidneys' periphery from ultrasound pictures in order 

to retrieve the information[23]. Both genetic and non-genetic risk prediction models for CKD are created by using 

a logistic regression model with weighting based on the natural logarithm. [24]. With the use of opportunity-based 

evaluation of patients at elevated risk as a full practice, It's possible to pinpoint individuals at an elevated risk of 

developing CKD by means of community gatherings, workplace events, or specific locations such as 

pharmacies[25]. 

Predicting kidney disease using deep learning models present several technical hurdles that make it a challenging 

endeavor: 

i) Limited availability of labelled data: The limited availability of high-quality labelled data for kidney disease 

prediction makes it difficult to train accurate models. 

ii) Variability in disease progression: The progression of kidney disease can vary greatly from patient to patient, 

making it difficult to build models that can accurately predict disease progression and outcomes. 
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iii) Overfitting and generalization: Deep learning algorithms are prone to overfitting training data and 

underperforming on fresh, untried data. 

iv) The model produces less accuracy and requires more computation. 

The important objectives of this research work are: a) to develop a deep learning-based kidney disease prediction 

model that can directly deal with the images. 

b) To do better preprocessing on the dataset to improve the quality of the images. 

c) Developing models that can produce high accuracy with less computation time. 

2. BACKGROUND STUDY 

Kidney disease prediction involves various deep learning techniques for examining extensive sets of patient data 

and recognizing patterns that can be applied to evaluate the potential emergence of renal disease. Fuzhe Ma et al.[26] 

proposed the SVM and Multilayer Perceptron algorithms on the IOMT platform to identify, classify, and diagnose 

chronic renal failure beforehand. Alsuhibany et al.[27] proposed an ensemble of Deep Learning models, which were 

used in CKD recognition and categorization in cloud architecture powered by IoT and produced 96.9% accuracy, 

but the model used only 400 samples. Raj Anish et al.[28] proposed a sharpness-aware minimization technique for 

automatic kidney volume segmentation in patients, which uses combining cosine loss to improve segmentation 

accuracy. K.Shankar et al.[29] suggested a DL model for kidney disease prediction with the use of feature selection 

using the Ant Lion Optimization (ALO) technique and produced 90.55% testing accuracy, but this technique used 

only 400 patient samples. Kumar, Kailash et al.[30] proposed a special DL model that mixes a fuzzy deep neural 

network with an existing dataset as a csv file and obtained an accuracy of 99.23% for kidney illness diagnosis and 

prognosis. Ahmed J. Aljaaf et al.[31] proposed a machine learning model framework for early CKD prediction with 

an impressive 99.5% accuracy. However, it's worth noting that this model's limitations stem from its reliance on a 

relatively small training and validation dataset of just 400 patient data points. Hossam M et al.[32] proposed an 

Antlion optimization algorithm-based selection of features for maximizing the classification performance. Vijendra 

Singh et al.[33]suggested a novel deep learning model that used the most crucial CKD characteristics, such as the 

number of red blood cells and albumin, to detect the kidney disease. The drawback of this model is that it has been 

carried out on minimal data sets. As shown in table 1, most of the existing techniques have done disease prediction 

on the feature datasets that were already extracted. Some existing models lack good accuracy in disease detection 

and prediction. Some techniques used a too small dataset, and some techniques could not produce good accuracy 

due to a lack of pre-processing and required high computation times for training and validation. Still, there is a 

requirement to develop a new deep learning-based model that can deal with images directly and produce good 

accuracy with less computation time. So this research work provided a solution for the above-identified gaps by 

developing a ResNet Model to predict kidney disease. 

3. MATERIALS AND METHODS 

 3.1 Materials 

      3.1.1 Dataset  

The kidney image dataset consists of 12,446 images, of which 5,077 are normal images and 7,369 are images of 

kidney disease. The PACS (picture archiving and communication system) information was collected from a number 

of institutions in Dhaka, Bangladesh, where patients had already been diagnosed with renal diseases. The coronal 

and axial cuts were both chosen from contrast and non-contrast exams according to protocol for the total abdomen 

and urogram. Figure 1 shows some of the normal images and some of the images with kidney disease. 

  3.1.2 Data Pre-Processing 

   The dataset image size is 512 x 512 pixels. It was resized into a type of image size in order to equalize its size. 

After that, the photos were made grey.  

The original image size of 512 x 512 pixels is converted to 224 x 224 pixels for further processing. For clear-cut 

learning of the characteristics in the training data, a sizable amount of training data is necessary at this stage of 

preprocessing. Image augmentation is a powerful approach for DL models to improve generalization and reduce 

https://sciprofiles.com/profile/1915647
https://sciprofiles.com/profile/1915647
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overfitting. By applying various transformations to the original images, the model can be trained to recognize the 

object or environment from different viewpoints and under different conditions. 

Random flipping: To produce a mirror image, flip the image horizontally or vertically. 

Random rotation: Rotating the image by a random angle. 

Random scaling: Scaling the image by a random factor. 

3.2 Methods 

 

   

 

 

 

 

Figure 1.A Few Examples of Normal Kidney Images and CT Images with Kidney Disease 

3.2.1 Resnet152 with inception 

       ResNet-152v2 and Inception are two separate architectures with different design philosophies. However, it is 

possible to combine these architectures by using the ResNet-152v2 as a feature extractor and feeding the extracted 

features into the Inception modules for further processing. The ResNet-152v2 architecture is an improvement over 

the original ResNet architecture, with deeper layers and better performance. It uses the residual block as its basic 

building block, and it consists of a skip connection that bypasses one or more convolutional layers. This allows the 

Table 2. Literature Review on kidney disease detection and prediction 

S. No 
Techniques or 

Methods 

Performance metrics 

(Accuracy) 
Advantages Gap identified 

1 
Machine learning 

algorithms[34] 
95.8% to 98.3% Produced good accuracy. 

A different dataset with similar features as the 

datasets that will be evaluated for 

performance is the one used to identify 
problems. 

2 
Machine learning 

techniques[35] 
82.56% to 99.8% 

Dimensionality 

reduction increased the 
speed of the model. 

Machine learning techniques were 

experimented with on a small dataset. 

3 
Deep learning 

model[23]  
85.6% 

The learning rate for 

every parameter is 

adapted automatically 
using the Adam 

optimizer. 

Produced less accuracy. 

4 
Logistic regression 

model [24] 
89.4% 

The prediction model 
pinpoints people most at 

risk of developing CKD 

before it progresses. 

This model performs only on a small dataset. 

5 
Hazard regression 

[38] 
87% to 91.1% 

The model slows CKD 
progression. 

Only 2178 patient’s data were used for 
training and validation. 

6 
Gray level co- 

occurrence matrix[37] 
98.38% Produced good accuracy. Only 300 samples were taken for testing. 

7 
Random Forest[4] 

 
98 % Produced good accuracy. 

Only 400 samples were taken for training, and 
computation time is high. 

8 
AI deep learning 

algorithm[39] 
89.3% to 95.7% Produced good accuracy. 

Cases of CKD may have been misclassified 

because the term "chronic kidney disease" 
depends on a single eGFR result. 

9 Deep learning[23] 95% 

To enhance kidney 

quality, the useless 
peripheral portion is 

eliminated. 

High computation time. 
 

10 Naïve Bayes[40] 97.67% 

Feature selection reduces 

the dimensionality of the 
dataset. 

This model cannot deal directly with images, 

and only 400 samples were available in the 
dataset. 
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network to gain residual mappings, which can enhance the functionality of deep neural networks. The Inception 

architecture, on the other hand, is based on the idea of using multiple branches of convolutional layers with distinct 

filter sizes and pooling operations and then combining the outputs of these branches. This allows the network to 

learn both local and global features at different scales. One possible way to combine these architectures is to use a 

ResNet-152v2 as a feature extractor and then feed the extracted features into an Inception module for further 

processing. This can be achieved using a sequential model in a deep learning framework such as Keras or 

TensorFlow. 

3.2.2 ResNet-101 model 

ResNet-101 consists of 101 layers, comprising shortcut connections, fully interconnected layers (FL), layers with 

pooling, and layers with convolution. The shortcut connections, also called skip connections, allow for the network 

to bypass certain layers and preserve the gradient flow during backpropagation, which assists in preventing the 

vanishing slope issue and allows for greater depth network training. ResNet-101 has attained cutting-edge 

performance on numerous computer vision exercises, including object identification, picture segmentation, and 

image classification. ResNet-101 was trained beforehand on the ImageNet dataset, a large-scale collection 

comprising millions of labelled images. 

3.2.3 ResNet-50 model 

In 2015, Microsoft Research unveiled ResNet-50, a well-liked deep convolutional neural network architecture. It is 

frequently employed for applications involving picture recognition and classification and has attained cutting-edge 

performance on numerous benchmark datasets. The ResNet-50 network can learn residual mappings that can 

enhance the performance of deep neural networks since its architecture is based on the residual block. A residual 

block is composed of two or three layers of convolution, and the shortcut connection omits one or more of these 

layers. Rather than trying to learn the full mapping from scratch, the network can instead learn the residual mapping 

between the block's input and output. Sixteen layers of     convolution, three layers with pooling, and one fully 

interconnected layer are among the 50 layers that make up ResNet-50. The number of convolutional layers and 

filters in each of the 23 residual blocks varies. 

4. PROPOSED METHODOLOGY 

4.1 System model 

4.1.1 ResNet-152 with Inception 

ResNet-152 with Inception-v3: ResNet-152 with Inception-v3 combines the ResNet-152 and Inception-v3 

architectures by replacing the regular convolutional layers in ResNet-152 with Inception modules. This helps 

improve the accuracy of the network while keeping the computational cost manageable. Mathematically, the output 

of a ResNet-152 with an Inception-v3 block can be represented in equation (1). 

Y=fc1x, c3x, c5x, mpx+ x       (1) where [c1(x), c3(x), c5(x), mp(x)] is the inception component's output, f (.) is the 

residual function, and the block's entry point is x. The function f(.) can be expressed as a series of 1x1 layers of 

convolution; batch normalization, and a nonlinear activation function are all performed afterward. The output of the 

block is the count of remaining connections and the output of the residual function. 

4.1.2 ResNet -101 

ResNet-101 has 101 layers in total, including fully connected layers, layers with convolution, layers with pooling, 

and residual connections. Here is a brief overview of the mathematical model: Residual Blocks: The core component 

of ResNet-101 is the residual block. Two or three convolutional layers, batch normalization, and a non-linear 

activation function, such as ReLU, make up a residual block. The residual block's output is described as follows: y 

= f(x) + x. where the block's input is x, the block's output is f(x), and y is the output of the residual connection. The 

function f(x) can be represented as a set of layers of convolution, batch normalization, and a nonlinear activation 

function, such as ReLU, which are then applied.  

Convolutional Layers: ResNet-101 uses a series of convolutional layers with various kernel dimensions to obtain 

characteristics from the input image.  
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Pooling Layer:  This layer combines the extracted features    learned from previous layers. Both median and 

maximum layers with pooling are used in ResNet-101. 

Fully Connected Layers: Before producing the final output, the result of the last layer of pooling is flattened and 

routed via a number of fully linked layers. 

ResNet-101: ResNet-101 is constructed by stacking multiple residual blocks together. The residual blocks are 

grouped into different stages based on the spatial size of the feature maps. Each stage consists of multiple residual 

blocks with the same spatial size. The quantity of leftover blocks at each level depends on the depth of the network. 

Mathematically, the output of a ResNet-101 block can be represented in equation (2). 

Y=f([c1(x), c2(x), c3(x)]) + x              (2) 

where [c1(x), c2(x), c3(x)] is the output of an arrangement of convolutional layers with different kernel sizes, f(.) is 

the residual function, and the block's input is x. The function f (.) can be expressed as a series of layers with 

convolutional, batch normalization, and a function of nonlinear activation coming next. The block's output is the 

result of adding the residual connection and residual function outputs together. 

4.1.3 ResNet 50  

Sixteen layers with convolutional, three layers with pooling, and a single layer that is entirely connected are among 

the 50 layers that make up ResNet-50. The number of layers of convolution and filters in each of the 23 residual 

blocks varies. 

Residual Blocks: The ResNet-50's primary fundamental component is the residual block. Two or three convolutional 

layers, batch normalization, and an activation function that is non-linear in ReLU fashion make up a residual block. 

The residual block's output is specified as: y = x + f(x) where in the block's input is x, f(x) is its output, and y is the 

block's residual connection's output. Convolutional layers, batch normalization, and a function of nonlinear 

excitation, such as ReLU, can all be used to represent the function f(x). 

Convolutional Layers: To excerpt information from the input image, ResNet-50 employs a number of layers with 

various kernels. Following the convolutional layers, a non-linear activation function, such as ReLU, is used. 

Pooling Layers: This layer combines the extracted features learned from previous layers.  In ResNet-50, layers with 

maximum and average pooling are both employed. 

Fully Connected Layers: Before producing the final output, the results of the last layer are flattened and routed 

through a number of fully linked layers.  

ResNet-50 is constructed by stacking multiple residual blocks together. The residual blocks are grouped into 

different stages based on the spatial size of the feature maps. Each stage consists of multiple residual blocks with 

the same spatial size. The quantity of leftover blocks at each level depends on the depth of the network. 

Mathematically, the output of a ResNet-50 block can be represented in equation (3). 

Y= f([c1(x), c2(x)]) + x         (3)    where [c1(x), c2(x)] is the output of a sequence of convolutional layers with 

different kernel sizes, f(.) is the residual function, and X is the block's input. This function is expressed as a number 

of convolutional layers; batch normalization, and a non-linear activation function are then applied. The output of 

the block is the count of remaining connections and the output of the residual function. 

4.2 Architecture and working 

The input images are of size 224x224. ResNet152v2 is divided into several stages, the first of which is a 

convolutional layer with 64 filters and a 7x7 kernel, followed by stage 2: This stage starts with a convolutional layer 

that performs convolutions on the input image. The layer applies 64 filters, each using a 7x7 kernel.  When a stride 

of 2 is utilized, the filters diminish the spatial dimensions of the feature maps by progressing 2 pixels with each 

step. After the convolutional layer, batch normalization is utilized. It normalizes the activations of the previous 

layer, which helps stabilize the training process. The batch-normalized activations are then passed through a ReLU 

activation function. It zeros out any negative values and maintains positive values as they are, thereby introducing 

non-linearity into the network. The output of the ReLU activation is fed into a max pooling layer. This layer conducts 
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max pooling using a 3x3 window and a stride of 2. Max pooling further decreases the spatial dimensions while 

preserving essential information. Stages 2–5 consist of multiple residual blocks with increasing feature map sizes. 

Every residual block is comprised of multiple layers, usually encompassing convolutional layers, batch 

normalization, ReLU activation, and skip connections.  

These skip connections facilitate direct gradient flow through the block, thereby mitigating the vanishing gradient 

issue during training. The feature map sizes typically increase with each stage, allowing the network to capture more 

complex and high-level features. After the previous stages, the feature maps are further processed through a global 

average pooling layer (GAP). The GAP calculates the mean value for each feature map, generating a constant-length 

vector that encapsulates the image's feature information as a whole. The GAP layer's output is then linked to a fully 

connected layer comprising one thousand units. Every unit within this layer is linked to every unit in the preceding 

layer, allowing for complex combinations of features. Figure 2 shows the overall architecture of the improved 

ResNet models. 

        ResNet101 has 101 layers, including layers for pooling and layers with convolution, fully connected layers, 

and residual connections. The input layer is a layer of convolution with a 7x7 kernel size and 64 filters. The stride 

is 2, which diminishes the spatial dimensionality of the input image. In ResNet101, Stage 1 consists of a succession 

of Max layers of pooling, layers of convolution, and residual blocks. The spatial size of the feature maps is reduced 

from 224x224 to 56x56. Stage 2 consists of a succession of Max layers of pooling, layers of convolution, and 

residual blocks. The spatial size of the feature maps is reduced from 56x56 to 28x28. Stage 3 consists of a succession 

of Max layers of pooling, layers of convolution, and residual blocks. The spatial size of the feature maps is reduced 

from 28x28 to 14x14. Stage 4 consists of a succession of Max layers of pooling, layers of convolution, and residual 

blocks. The spatial size of the feature maps is reduced from 14x14 to 7x7. Stage 5 is comprised of a fully connected 

layer, a GAP layer with 1000 units, and a function for activating softmax. The soft maximal function's result is, over 

the 1000 ImageNet categories, a probability distribution. ResNet-101 employs skip connections, also referred to as 

residual connections. 

ResNet-50 is comprised of a total of 50 layers, which include pooling, fully connected, and residual connections. 

An overview of the architecture is presented here: The input layer is a convolutional layer with a 7x7 kernel size 

and 64 filters. The stride is 2, which diminishes the spatiotemporal dimensionality of the input image. Stage 1 

consists of a succession of layers with maximum pooling, convolution, and residual blocks. The spatial size of the 

feature maps is reduced from 224x224 to 56x56. Stage 2 consists of a succession of layers with maximum pooling, 

convolution, and residual blocks. The spatial size of the feature maps is reduced from 56x56 to 28x28. Stage 3 

consists of a succession of layers with maximum pooling, convolution, and residual blocks. The spatial size of the 

feature maps is reduced from 28x28 to 14x14. Stage 4 consists of a succession of layers with maximum pooling, 

convolution, and residual blocks. The spatial size of the maps of characteristics is diminished from 14x14 to 7x7. 

Stage 5 includes a softmax activation function, a fully connected layer with 1000 units, and a GAP layer. The output 

 

 

Figure 2. Overall architecture of the improved ResNet models 
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of the soft maximal operation is a range of probabilities for the 1000 ImageNet categories.            ResNet-50 employs 

skip connections, also referred to as residual connections. These skip connections facilitate the direct flow of 

gradients from the block's output to its input, effectively mitigating the vanishing gradient issue and enhancing the 

training of deep networks. 

Figure 3 shows the overall flow diagram of the proposed model. Observing the diagram, the model is divided into 

two main steps: data pre-processing and ResNet models for feature extraction, disease detection, and disease 

prediction. As a first step, the input, lambda, conv2D, MaxPooling2D, dense, and flatten Keras layers are set, and 

then a preprocessing library is included to prepare our input data. Data augmentation is carried out using the image 

data generator, with the aim of generating new images through operations like zooming in, zooming out, and 

horizontal and vertical shifts, as determined by the parameters specified in the image data and ResNet models for 

feature extraction, disease detection, and disease prediction. As a first step, the input, lambda, conv2D, 

MaxPooling2D, dense, and flatten Keras layers are set, and then a preprocessing library is included to prepare our 

input data. Data augmentation is carried out using the image data generator, with the aim of generating new images 

through operations like zooming in, zooming out, and horizontal and vertical shifts, as determined by the parameters 

specified in the image data generator.Image dimensions of 224 x 224 have been opted for in both training and 

testing. The top layer is set to false, which indicates whether the topmost layer should be added or removed, and in 

this case, it is being removed. As the weights are pre-trained and held constant, the 'trainable' parameter is set to 

'false.'  

Without making this change, the model would need to undergo repetitive training, which could result in diminished 

accuracy. The quantity of output and the available output classes collectively determine the number of output classes 

in the dataset. ResNet152v2, ResNet101, and ResNet50 have all had their final layers taken off. ResNet152V2 (input 

shape=IMAGE_SIZE + [3]) is used to set the image size as 224 x 224 with a single channel for training and testing 

because renal images are in black and white. The flatten layer is eliminated, and weight is presented as an ImageNet, 

which is already included in Keras. After model evaluation, the image of kidney disease is predicted. 

5. EXPERIMENTATION, RESULTS AND ANALYSIS 

5.1 Experimental Setup 

The total experiment is conducted using Google Colab, which provides a convenient and powerful environment for 

deep learning. Google Colab supports several popular deep learning frameworks, such as TensorFlow and Keras 

are available and come with a range of Built-in libraries and tools for analyzing and visualizing data.  

 

 
 

 

Figure 3. Overall flow diagrams of the proposed ResNet models for kidney disease detection 

 



J. Electrical Systems 20-2s (2024): 165-183 

 

173 

Performance Metrics  

The equation (4) is the formula that can be used to determine how accurately a deep learning model predicts diseases. 

Accuracy=TP+TN  TP+TN+FP+FN                 (4) 

Recall serves as a dedicated evaluation metric employed to gauge the classifier's effectiveness in achieving accurate 

classifications through the classification model, which is represented in equation (5) 

    Recall=TPTP+FN                                         (5) 

Precision is a performance measure utilized for assessing the accuracy of a binary classification model, with a 

particular emphasis on the positive class. It represents the percentage of correctly predicted positive cases among 

all instances that were predicted as positive. Precision tells about the understanding of the model's capacity to 

diminish false-positive predictions. The formula for precision is represented in equation (6). 

       Precision=TPTP+FP                                  (6) 

where TP (True Positive) is the count of positively predicted cases that actually occurred, TN (True Negative) is the 

count of negatively predicted cases actually occurring, FP (False Positive) is  the tally of positively forecasted 

instances that indeed transpired, and FN (False Negative) is the count of negatively predicted cases actually 

occurring. ROC-AUC is a frequently used metric for evaluating and comparing classification models. It provides a 

unified value that summarizes the model's performance, regardless of the chosen threshold. Models with higher 

ROC-AUC values are generally considered to have better predictive capabilities. Computing the true positive rate 

(TPR) and false positive rate (FPR) involves multiple probability thresholds for both the total positive instances (P) 

and total negative instances (N).As shown in equation (7), the AUC is calculated using the following formula: 

AUC=(sum(TPR_i) - TPR_0 / 2) P * N             (7) 

Where TPR_i is the True Positive Rate at point i on the ROC curve, and TPR_0 is the TPR at the starting point 

(FPR = 0) of the ROC curve. P denotes the collective count of positive instances, while N denotes the cumulative 

count of negative instances. The formula computes the AUC by adding together the TPR values and dividing the 

result by the product of the total positive instances (P) and the total negative instances (N). It subtracts TPR_0 

divided by 2 to account for the trapezoidal approximation. 

5.2 Results 

The results of the Improved ResNet models for Chronic Kidney Disease Prediction are presented in this section. 

Figure 4 displays the feature maps extracted from ResNet's deep CNN, which are valuable resources for gaining 

deeper insights through visual analysis. This process involves a meticulous examination of the feature maps, 

allowing us to discern and recognize distinctive patterns, textures, and shapes within the images.  

 

Figure 4. Feature Map Generated by ResNet Models for the Kidney Image Input 
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Figure 5. Feature Maps Extracted from the Inception Model for the Kidney Image 

 

Figure 6. Combined Features Extracted from Kidney Images Using ResNet Models and Inception Model 

It's essential to understand that these feature maps possess a hierarchical structure, where early layers focus on 

capturing fundamental elements such as edges and corners, while higher layers progressively encode more intricate 

and object-centric information. This hierarchical organization unveils interpretable structures, making it possible to 

identify features like diagonal lines or specific textures like fur scales. Figure 5 shows that the feature maps extracted 

from images. These maps represent different levels of abstraction, with early layers capturing basic features like 

edges, curves, and color variations, while deeper layers encode more intricate details like the shapes of kidney 

structures or fine-grained textures. Figure 6 shows the combined features extracted from kidney images using both 

ResNet and Inception models, providing a comprehensive representation of   the spatial location of features within 

the images. In this image, the x-axis represents the channel index, which essentially corresponds to the different 

extracted feature maps or channels from the two models. Each channel captures specific patterns, edges, textures, 

or abstract information learned by the models during their training. On the y-axis, we have the feature values, which 

quantify the importance or presence of these patterns at different spatial positions. This representation allows us to 

visually inspect and analyze how different features from the ResNet and Inception models contribute to the overall 

understanding of the kidney images. By examining the values and patterns across channels, the information learned 

by these models can be combined to potentially make more informed decisions or further process the features for 

our specific task, such as kidney disease prediction. Detecting kidney cysts or abnormalities in medical images often 

involves using CAD systems, which can analyze image features, textures, and patterns to identify potential 

anomalies.  
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Figure 7.a)The original image b) Diagnosis indicating the possibility of cysts  c) An Image with a prominent 

cyst area highlighted in blue. 

 

Figure 8. a) The original image  b) Diagnosis indicating the possibility of tumor 

Kidney cysts are fluid-filled sacs that can form in or on the kidneys, and they may appear as rounded or oval 

structures with varying degrees of transparency on medical images. The blue color mentioned likely represents the 

appearance of these cysts in the image. In Figure 7b, we observe a kidney image displaying the possibility of 

potential kidney cysts, represented by prominent blue-colored bubble-like shapes. Figure 7c illustrates an enlarged 

view of the potential cyst area, depicted in blue within the 7b image. Renal tumors, commonly referred to as kidney 

tumors, represent abnormal cell growth within the kidneys. Accurate prediction and timely treatment are vital in 

managing kidney tumors, particularly in cases of malignancy, as early-stage tumors generally offer a more favorable 

outlook. 
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In Figure 8a, the original image is presented, while Figure 8b accentuates the potential presence of a kidney tumor 

by highlighting distinct, dark red-shaded regions within the kidney input image. These stones can exhibit differences 

in size, spanning from minuscule particles to more substantial structures resembling golf balls. Kidney stones can 

be composed of various substances, including calcium, oxalate, uric acid, and cystine. Figure 9a presents the original 

image, while Figure 9b highlights the potential possibility of stones, represented in green hues. The words "train 

accuracy," "validation accuracy," "train loss, and "validation loss" are taken into consideration when training and 

evaluating a deep learning model. The training dataset's accuracy is assessed using the train accuracy metric, 

revealing the model's ability to classify training instances with accuracy. Conversely, the validation accuracy metric 

gauges the model's performance on a distinct validation dataset, reflecting its accuracy on previously unseen data. 

The train loss also referred to as training loss or training error, quantifies the disparity between the anticipated model 

output and the true target values within the training dataset. Similar to train loss, validation loss is calculated using 

the validation dataset. It computes the variance between the model's predicted values and the real target values for 

the validation dataset. As shown in Figure 10, the proposed ResNet models such as ResNet50, ResNet101, and 

ResNet152v2 with inception produced average training accuracies of 94.021%, 95.752%, and 99.2% and average 

Validation accuracies of 93.968%, 95.888%, and 99.812% for Epoch 5. The train accuracy curve starts at 90.57% 

and reaches the highest accuracy of 99.99%, and the validation accuracy curve starts at 89.99% and reaches the 

highest accuracy of 96.21%. The train loss curve starts at 0.02 and the highest loss value is 0.1143 during the training 

of the dataset, and the Validation loss curve starts at 0.0301 and the highest validation loss value is 0.1201. Figure 

11 illustrates the performance of the proposed ResNet models on the kidney dataset for Epoch 7. The proposed 

ResNet models such as ResNet50, ResNet101, and ResNet152v2 with inception produced average training 

accuracies of 93.295%, 95.930%, and 99.08% and average Validation accuracies of 92.887%, 96.531%, and 

99.901% for Epoch 7. The train accuracy curve starts at 89.63% and reaches the highest accuracy of 99.99%, and 

the validation accuracy curve starts at 89.678% and reaches the highest validation accuracy of 100%. The train loss 

curve starts at 0.0201 and the highest loss value is 0.1237 during the training of the dataset, and the Validation loss 

curve starts at 0 and the highest validation loss value is 0.1232. This result shows a positive sign that the proposed 

model did not meet overfitting or underfitting problems during its execution for epochs 5 and 7. 

5.2 Analysis 

Table 2 illustrates the comparative analysis of training and validation accuracy for the proposed model across 

various epochs. The ResNet-50 model yielded validation accuracy of 92.8871% and 94.021%, alongside training 

accuracy of 93.295% and 94.021% for epochs 5 and 7, respectively. Validation accuracy for the ResNet-101 model 

reached 96.53171%, while training accuracy reached 95.930% for epoch 7, and 95.8884% and 95.752% for epoch 

5. Similarly, the ResNet152v2 with inception model excelled with validation accuracy of 99.90143% and training 

accuracy of 99.08% and 99.2% for epochs 7 and 5, respectively. Figure 12 presents the performance comparison 

and findings from multiple perspectives.  

 

 Figure 9.The original image b) Diagnosis indicating the possibility of mild stone 
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ResNet 152v2 with inception achieved the highest validation accuracy of 99.90143% in epoch 7. For the Resnet50 

model, validation accuracy peaked at 93.968% in epoch 7. However, the same model displayed a validation accuracy 

of 92.887% in epoch 5, indicating a 1.081% increase in the 7th epoch. The ResNet 101 model demonstrated training 

accuracies of 95.752% and 95.930% for epochs 5 and 7, respectively, which were slightly lower than their respective 

validation accuracies. Significantly, all models demonstrated higher validation accuracy in comparison to their 

training accuracy. Nonetheless, the slight variance between training and validation accuracy highlights the robust 

performance of the models without encountering issues of overfitting or underfitting. The ResNet 152v2 with 

inception model yielded a sensitivity of 99.93%, a specificity of 99.84%, a precision of 99.89%, and an accuracy of 

99.90%. Similarly, the ResNet101 model demonstrated a sensitivity of 97.67%, a specificity of 94.81%, a precision 

of 96.59%, and an accuracy of 96.53%. In contrast, the ResNet-50 model showcased a sensitivity of 95.31%, a 

specificity of 91.88%, a precision of 94.76%, and an accuracy of 93.96%.  

As illustrated in Figure 13, when comparing sensitivity and specificity, all ResNet models exhibited better sensitivity 

than specificity. Moreover, when evaluating specificity and precision, all the models demonstrated higher precision 

values than specificity. The count of images used in this research work is 12,446 for training and 2490 for validation. 

The ResNet-152v2 with inception model produced 1492 correct positive predictions, along with 2 incorrect positive 

predictions, 1 incorrect negative prediction, and 995 correct negative predictions, as indicated in figure 14. The 

ResNet-101 model yielded 1460 correct positive predictions, 52 incorrect positive predictions, 35 incorrect negative 

predictions, and 943 correct negative predictions, as depicted in figure 15. Similarly, the ResNet-50 model generated 

1439 correct positive predictions, 80 incorrect positive predictions, 71 incorrect negative predictions, and 900 

correct negative predictions, as illustrated in figure 16. 

 

 

Figure 10. Performance of the proposed ResNet models based on Accuracy and Loss for Epoch 5 

 

Figure 11. Performance of the proposed ResNet models based on Accuracy and Loss for Epoch 7 
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 The ROC-AUC (Receiver Operating Characteristic: Area under the Curve) curve serves as a visual tool for 

assessing and comparing model performance. It provides important insights regarding a model's capacity to 

distinguish between positive and negative instances at different classification thresholds. 

 

 

 

 

 

 

 

 

 
Figure 12. Performance of the proposed ResNet models based on training and Validation Accuracy for various 

Epochs 

Table 2. Train and validation accuracy of the 

ResNet models for various Epochs 
 

ResNet Deep 

learning 

model 

Validation 

Accuracy 
Training Accuracy 

Epoch 5 Epoch 7 Epoch 5 Epoch 7 

ResNet152v2 
with 

inception 

99.812% 99.901% 99.2% 99.08% 

ResNet101 

model 
95.888% 96.531% 95.752% 95.930% 

Resnet50 

model 
93.968% 92.887% 94.021% 93.295% 

 

 
Figure 13. Performance of the proposed improved ResNet models on the kidney image dataset 
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Figure 14. Confusion matrix for an Improved ResNet-152v2 with inception model 

 

Figure 15. Confusion matrix for Improved ResNet-101 model 

This curve is constructed by plotting TPR against the FPR at different classification thresholds. It illustrates how 

the relationship between TPR and FPR changes as the threshold is adjusted. Typically, the curve commences at the 

point (0, 0) and concludes at (1, 1). The AUC quantifies the classifier's overall performance and is determined by 

calculating the area beneath the ROC curve. Its values range from 0 to 1, with 0.5 signifying a classifier that performs 

at random, and 1 indicating a flawless classifier. 

Table 3. Performance of the proposed improved ResNet 

models on the kidney Dataset 

Performance metrics 
ResNet152v2 

with inception 

ResNet-

101 
ResNet -50 

Sensitivity 99.93% 97.67% 95.31% 

Specificity 99.84% 94.81% 91.88% 

Precision 99.89% 96.59% 94.76% 

Negative Predictive 

Value 
99.90% 96.44% 92.71% 

False Positive Rate 0.16% 5.19% 8.12% 

False Discovery Rate 0.11% 3.41% 5.24% 

False Negative Rate 0.07% 2.33% 4.69% 

Accuracy 99.90% 96.53% 93.96% 

F1 Score 99.91% 97.13% 95.03% 

Matthews Correlation 
Coefficient 

99.78% 92.75% 87.33% 

 

https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
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   Figure 16. Confusion matrix for Improved ResNet-50 model    

AUC simplifies the process of comparing and ranking various classifiers by providing a single numerical measure. 

A higher AUC corresponds to the classifier's enhanced capability in discriminating between positive and negative 

instances. Figure 17 displays the ROC curves and the associated AUC values for these three models: improved 

ResNet152v2 with the inception model, improved ResNet-101, and improved ResNet-50, which are 0.996, 0.965, 

and 0.935, respectively.  

 

Figure 17. ROC curves of the improved ResNet models 

An AUC value that is very close to 1 indicates that the models are able to achieve a high TPR while keeping the 

FPR low, indicating a strong ability to discriminate between the classes. Table 4 displays a performance evaluation 

that juxtaposes the proposed model against established techniques, focusing on accuracy. Some of the existing 

models used high computation times to get good accuracy and used very few samples or a very small dataset for 

training and validation. As shown in figure 7, our improved ResNet models used less computation time. The 

improved ResNet152v2 with the inception model produced better accuracy than all other existing techniques and 

other ResNet models in their 7 epochs. It is clear that the identified gaps in the literature survey are fulfilled in this 

research work.  
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Table 4. Comparison of the proposed models with existing models 

Techniques/Methods Accuracy 

Deep learning model [23] 85.6% 

ML Techniques[34] 98.3% 

ML Algorithms[35] 99.8% 

Logistic Regression model[24] 89.4% 

Hazard regression [36] 91.1% 

Gray level co- occurrence matrix [37] 98.38% 

Random Forest[4]    98% 

Artificial intelligence DL[38] 95.7% 

Naïve Bayes[39] 97.67% 

fuzzy deep neural network[30] 99.23% 

Ensemble DL[27] 96.9% 

Multilayer Perceptron algorithm with 

SVM[26] 98% 

Ant Lion Optimization [29] 90.55% 

Improved ResNet152v2 with 

inception(proposed) 
99.90143% 

Improved ResNet101(proposed) 96.53171% 

Improved Resnet50 (proposed) 93.968% 

6. Conclusion 

Deep learning models for predicting chronic diseases are presented in this work. In this work, we have enhanced 

the ResNet152v2, ResNet 101, and ResNet 50 models to address the deficiencies identified in the literature review. 

We have employed the chronic kidney disease image dataset with the improved ResNet models. The proposed 

ResNet models, including the improved ResNet152v2 with the inception model, the improved ResNet 101, and the 

improved ResNet 50, performed well, achieving accuracy rates of 99.90%, 96.53%, and 93.968%, respectively. 

Among all the ResNet models, ResNet 152v2 with the inception model outperformed the others, producing a 

sensitivity of 99.93%, a specificity of 99.84%, and a precision of 99.89%. In our future work, we plan to develop 

models that integrate multiple models and incorporate clinical data, laboratory data, and genetic data for kidney 

disease detection and classification. 
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