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Abstract: - Research is still being done on the automated identification and classification of plant diseases. A quick and precise methodology 

for identifying plant diseases can improve both small-scale commercial crop protection and large-scale food security. Deep learning (DL) 

methods also enable the monitoring of plant health and the early diagnosis of illnesses. This study's DLEN-KLM model, which is built on 

EfficientNet and Kernel extreme Learning Machine (KLM) and is designed to diagnose plant diseases intelligently, addresses this issue. In 

contrast to limited adaptive histogram equalisation as a preprocessing method, the suggested DLEN-KLM model uses median filtering in its 

construction. A feature extractor built on EfficientNet B0 is also part of the DLEN-KLM model, which is used to create the best feature 

vectors before categorising them with the KLM model. Utilising a benchmark dataset, the effectiveness of the DLEN-KLM technique is 

validated. The experimental results showed that the technique outperformed more contemporary methods in terms of disease diagnosis. 

Keywords: Median filtering, Adaptive histogram equalization, KLM classifier, Deep learning, EfficientNet model. 

 

I. INTRODUCTION 

The Indian economy is heavily reliant on agricultural production [1]. Thus, in fields of agriculture, detecting 

diseases in plant play a significant part. In order to discover plant diseases in an earlier phase, usage of automated 

disease detection techniques is highly useful. The diseased trees barely recover and die within six to seven years 

[2, 3]. Georgia and Alabama, both in the Southern US, have seen its effects. An early diagnosis may be helpful in 

this case. Emerging methods for detecting and mitigating plant diseases serve the dual purposes of lowering 

pesticide use and boosting food productivity, with estimates for the world's population to reach 10 billion by 2055 

[4]. The primary goal of achieving food safety, in addition to the development of better crop varieties, is the 

detection of diseases. The traditional techniques of disease detection have involved expert/farmer manual checks 

that are expensive and time-consuming, proving to be unworkable for millions of farms worldwide [5]. 

The traditional model for detecting plant diseases is just naked eye observation by specialists whereby detection 

and identification of plant disease are performed. In this regard, a continuous monitoring and large team of experts 

of plants are needed that are very expensive. Simultaneously, in many countries, farmers don’t have appropriate 

facilities or even idea that they might interact with the expert. Consequently, consulting experts time consuming 

and high cost [6]. Detecting Plant disease through visual manner is less accurate and simultaneously, more 

laborious task and only made in constrained regions. Where automated detection techniques are employed, it 

might take less time, less efforts also become higher precision. Image processing is used to assess diseased regions 

that are infected and to ascertain how the colours of such regions vary [7]. Support machine vision is also used to 

provide image-based robot guiding, inspection, automation, and control [8]. 

 There has been a significant rise in research into computer vision models to enhance automatic approaches for 

recognising plant diseases with evident symptoms on leaves. As much farmer and detection system input as 

possible is being sought after by this system. Prior to the easier accessibility of deep learning models, research 

primarily focuses on using feature extraction to enhance technique for diagnosing diseases with variable 

outcomes. Artificial intelligence (AI), computer vision, and machine learning have all benefited several 

applications, including power forecasts for medicinal and renewable resource applications. AI has been 

extensively used in the COVID19 epidemic for the diagnosis of lung disorders and other predictive applications 

[9]. Through earlier diagnosis and detection, modern technologies can be used to lessen the detrimental effects of 

plant diseases. The automated diagnosis and detection of plant disease using computer vision and artificial 

intelligence (AI) is currently a hot topic of research due to the time-consuming, labor-intensive, and boring nature 

of autonomous monitoring of plant diseases. 
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The deep transfer learning-based EfficientNet and Kernel ExtremeLearning Machine (KLM) model called DLEN-

KLM was created in this study. The suggested DLEN-KLM model employs both the median filtering (MF) 

method of noise removal and the contrast limited adaptive histogram equalisation (CLAHE) approach of contrast 

enhancement. The DLEN-KLM model also uses an EfficientNet B0 based feature extractor to produce the best 

feature vectors, which are subsequently classified using the KLM model.  

II. RELATED WORKS 

Hernández and Lopez [10] developed a probabilistic programming method for detecting plant diseases through 

advanced Bayesian DL methods and the ambiguity as misclassification measurements . The result shows that 

Bayesian inference attains classification accuracy i.e., related with the benchmark optimization procedure to 

finetune DL methods. Guo et al. [11] proposed an arithmetical method of plant disease recognition and detection 

on the basis of DL method that enhances training efficiency, accuracy, and generality. First, the RPN has been 

employed to localize and recognize the leaf in complicated surroundings. Next, image segments depend on the 

result of RPN have the features of symptom via CV model. Lastly, the segmented leaf is inputted to the TL models 

and trained with the datasets of diseased leaves in simple background. 

In Saleem et al. [12], 3 DL Meta architecture includes SSD, Fast RCNN, and RFC have been used with the help of 

TensorFlow object detection frameworks. Each DL model is tested or trained on controllable environmental 

datasets for recognizing the diseases in plant species. Furthermore, an enhancement in the mean average accuracy 

of the optimally attained DL framework has been tried via an advanced DL optimizer. Kabir et al. [13] investigate 

an optimum plant disease detection method intergrading the diagnoses of many plants. In spite of being based on 

multiclass classifications, the method inherits multilabel classification methods for identifying the plant and the 

kind of diseases separately. For the evaluation and experiment, they have gathered information from different 

online sources which include leaf images of 6 plants, involving potato, tomato, corn, rice, apple, and grape.  

In Hong et al.'s [14] research, transfer learning has been used to decrease the amount of training data required as 

well as the time and cost associated with processing it. Patil and Patil [15] are conducting research to manually 

identify diseased plants using cotton plant leaf photos. Additionally, an Internet of Things-based framework is 

being utilized to collect various sensor information in order to identify climate fluctuations. By collecting photos 

through the full technique used in validation and training for image augmentation, fine-tuning, and pre-processing, 

the DCNN models are proposed for conducting cotton plant disease identification through healthy and infected 

cotton leaf images. This is accomplished by gathering images. 

Lijo [16] analyzes 3 main TL methods i.e. ResNet50, InceptionV3and DenseNet169 with an augmentation and 

with no augmentation for image classifications and thus detecting plant diseases. Afterward employing the 

abovementioned methods they examined the efficacy through different quality metrics: recall, precision, F1-score, 

accuracy. Turkoglu et al. [17] proposed 2 classification methods on the basis of deep feature extraction from 

pretrained CNN. In the proposed models, also they finetune and integrate 6 advanced CNN and calculate the 

provided problems as ensemble and individually. Lastly, the performance of distinct combinations depends on the 

presented method is estimated by an SVM classifier. 

III. PROPOSED MODEL 

This study develops a novel DLEN-KLM model for identifying and categorising plant diseases. The Median 

filtering-based noise removal, Limited adaptive histogram equalisation -based contrast enhancement, Otsu 

thresholding-based segmentation, EfficientNet B0-based feature extraction, and KLM-based classification are 

some of the various subprocesses that together forms the DLEN-KLM model. The complete operation of the 

DLEN-KLM model is shown in Fig. 1. 
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Figure 1. Overview of DLEN-KLM model 

3.1. Noise removal and Contrast enhancement in Image Preprocessing  

The preprocessing is done in two levels at the main stage: Median filter based noise removal and CLAHE-based 

contrast enhancement. The Median filter is a method of non-linear signal processing that relies on statistics. The 

output of the Median filter is g(u,v)=medf(u-i,v-j),i,jW, where f(u,v), g(u,v) signify both the source and the result 

pictures, and W denotes the 2Dimentional mask. The mask size is nn (whereas n is generally odd), such as 

3*3,5*5. Because the Median filter uses a non-linear filter, their mathematical analysis is more difficult for images 

with arbitrary noise. [18] 

𝜎𝑚𝑒𝑑
2 =

1

4𝑛𝑓2(𝑛)
≈

𝜎𝑖
2

𝑛 +
𝜋
2

− 1
⋅

𝜋

2
.                           (1) 

Whereas 𝜎𝑖
2 denotes the variation, 𝑛 represents the size of Median filter mask, 𝑓(𝑛̅) indicates the function of noise 

density. Also, the  variance of the normal filter can be given below 

𝜎0
2 =

1

𝑛
𝜎𝑘̇

2.                                                          (2) 

The Adaptive Histogram Equalisation (AHE) technique is modified by the CLAHE. To perform equalisation in 

various regions of the image. Bilinear interpolation is used to correct irregularities in the borders. The CLAHE 

was created because the AHE has a problem with noise amplification. It restricts the number of pixels that can be 

used to create particular grey scales. 

3.2. Using Multi-level Otsu thresholding Technique in Image Segmentation : 

Using the multi-level Otsu thresholding approach, the preprocessed image is segmented to identify the infected 

and healthy areas. Consider the pixels in a picture that are shown to exist in L different grayscales (1, 2,..., L). 

Assume that N represents the total number of pixels and n_i is the count of pixels at level i, with 𝑁 = ∑ 𝑛𝑖
𝐿
𝑖=1 . 

Assuming that pi=niN, we may calculate the level i probability of occurrence.Z-threshold is taken into 

consideration when dividing a picture into the classes C0 and C1. The levels [1, Z] are present in pixels in C0, 

while levels [Z+1, L] are present in pixels in C1. It is assumed that P0(Z) and P1(Z) reflect the cumulative 

probability, that 𝜇0(𝑍) and 𝜇1(𝑍) indicates the  level of mean , and 𝜎0
2(𝑍) and 𝜎1

2(𝑍) denote the  class variances 

C0 and C1, respectively. We supply these values as: 
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𝑃0(𝑍) = ∑ 𝑝𝑖

𝑍

𝑖=1

                                                                        (3) 
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𝐿
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Supposed 𝜇, 𝜎𝑏
2(𝑍) , and 𝜎𝑤

2(𝑍) demonstrated the mean level of image, within‐class variance and the between‐

class variance, correspondingly [19]: 

𝜇 = ∑ 𝑖

𝐿

𝑖=1

𝑝𝑖 = 𝑃0(𝑍)𝜇0(𝑍) + 𝑃1(𝑍)𝜇1(𝑍)                                           (9) 

𝜎𝑏
2(𝑍) = 𝑃0(𝑍)(𝜇0(𝑍) − 𝜇)2 + 𝑃1(𝑍)(𝜇1(𝑍) − 𝜇)2                          (10) 

𝜎𝑤
2 (𝑍) = 𝑃0(𝑍)𝜎0

2(𝑍) + 𝑃1(𝑍)𝜎1
2(𝑍)                                                    (11) 

The limit demonstrated by maximising the between-class variance provided by Otsu is: 

𝑍∗ =  arg
1≤𝑍<𝐿

maxi {𝜎𝑏
2(𝑍)}                                                       (12) 

This value is similar to the threshold determined by the principle of minimised within-class variances.: 

𝑍∗ = arg
1≤𝑍<𝐿

mini {𝜎𝑤
2(𝑍)}                                                          (13) 

3.3. Feature Extraction using EfficientNet : 

A collection of  vectors are extracted by the EfficientNet B0 model from the segmented image during feature 

extraction. Eight models make up the EfficientNet group, which is divided into B0 and B7. As the number of 

models increases, the number of variables that are evaluated does not, but accuracy does, with a dramatic increase. 

Instead of the Rectifier Linear Unit (ReLU) activation function, EfficientNet implements a unique activation 

function called Swish [20]. DL architecture aims to reveal tiny, effective solutions with efficient approaches. By 

consistently scaling the models' width, resolution, and depth as they are shrunk, EfficientNet, unlike another 

sophisticated technique, produces efficient results. The compound scaling model initially looks for a grid in order 

to discover correlations between the various scaling parameters of the baseline network within preset resource 

restrictions. Using this coefficient, the baseline network is later scaled to the selected target networks. In Fig. 2, 

the EfficientNet model's architecture is shown. Direct connection is used between bottlenecks in MBConv because 

the block comprises a layer that expands and then contracts the channel initially. The compression layer connects a 

lot fewer channels than the expansion layer does. When compared to a traditional layer, this framework's in-depth 

separable convolution reduces estimates by a factor of k2 while k stands for the kernel size, which specifies the 

height and width of the two-dimensional convolutional windows. 
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Figure. 2. Efficient Net Architecture 

When scaling resolution, depth, and width uniformly, the compound coefficients (as indicated in Eq. 14) are used 

under the principle of compound scaling. 

                                                                     𝑑𝑒𝑝𝑡ℎ: 𝑑 = 𝛼𝜓 

𝑤𝑖𝑑𝑡ℎ: 𝑤 = 𝛽𝜓                                                                (14) 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑟 = 𝛾𝜓 

𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1 

Contrarily, the grid search's definition of a constant is represented by the notation 𝛼, 𝛽, 𝛾. The user-determined 

coefficients shown by the symbol regulate how much resource is available for model scaling, whereas the 

symbols,, dictate how these extra resources are assigned to the network's resolution, width, and depth, 

respectively. FLOPS is inversely correlated to 𝑑,  𝑤2,  𝑟2 in a popular convolutional technique. Scaling 

convolutional networks as shown in Eq. (14) increases the network's FLOPSs (floating point operation per second) 

by an average of (𝛼, 𝛽2, 𝛾2)𝜙 (𝛼. 𝛽2𝑦2)𝜙. This is because convolutional operations account for the majority of the 

convolutional network's processing cost.The compound scaling methods scale these models in two steps as 

follows: 

Step1: Grid searching is carried out by 𝜙 = 1 and assumes that there are twice as many resources available. Also 

the ideal values are chosen for 𝛼, 𝛽, 𝛾. 

Step2: The baseline networks scale up in order to obtain EffcientNetB1 to B7 with distinct 𝜙 value by Eq. (14). 

Obtain 𝛼, 𝛽, 𝛾 values are defined as constants. EfficientNet B0 model is employed in this study's feature extraction 

technique. 

3.4. KLM Technique based Image Classification   

The feature vectors extracted from feature extraction are supplied as input to the KLM model to assign the proper 

class labels at the time of final picture classification. ELM was first proposed using the FFNN model. The KLM 

model's structure is depicted in Fig. 3. Determine 𝑦𝑘 ∈ {0,1},1 ≤ 𝑘 ≤ 𝐶  for the C class. The class a sample 

belongs to is indicated by the row vector 𝑦 = [𝑦1 , … , 𝑦𝑘 … , 𝑦𝐶 ]. For instance, the samples fall into the kth classes 

when 𝑦𝑘 = 1 and the remaining parts of y are 0. Assuming that P training sample {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑃  belongs to the C class 

and that 𝑥𝑖 ∈ 𝑅𝑁 & 𝑦𝑖 ∈ 𝑅𝐶, respectively, the output function of ELM possessing L hidden neuron might be given 

by 

𝑓(𝑥𝑖) = ∑ 𝛽𝑗

𝐿

𝑗=1

ℎ(𝜔𝑗 ⋅ 𝑥𝑖 + 𝑒𝑗) = 𝑦𝑖 , 𝑖 = 1, … , 𝑃         (15) 
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The terms h(.) describe a non-linear activation function (such as a Sigmoid function), 𝛽𝑖 ∈ 𝑅𝐶  represent the weight 

vector connecting jth output and hidden neurons [21], 𝜔𝑗 ∈ 𝑅𝑁means the weight vector connecting jth input and 

hidden neurons, and 𝑒𝑗 defines the bias of jth hidden neurons. The inner product of 𝜔𝑗. and 𝑥𝑖is represented as 𝜔𝑗 ⋅

𝑥𝑖. 

 

Figure 3. KLM architecture 

With 𝑃 equation, Eq. (15) could be expressed by 

𝛽 = 𝑌                                                       (16) 

whereas = [𝑦1
𝑇𝑦2

𝑇 … 𝑦𝑃
𝑇]𝑇 ∈ 𝑅𝑃×𝐶 , 𝛽 = [𝛽1

𝑇𝛽2
𝑇 … 𝛽𝐿

𝑇]𝑇 ∈ 𝑅𝐿×𝐶 , and 𝐻  denotes the hidden layer output matrix of 

NN: 

𝐻 = [
ℎ(𝑥1)
⋮
ℎ(𝑥𝑃)

] = [
ℎ(𝜔1 ∙ 𝑥1 + 𝑒1) ⋯ ℎ(𝜔𝐿 ∙ 𝑥1 + 𝑒𝐿)

⋮ ⋱ ⋮
ℎ(𝜔1 ∙ 𝑥𝑃 + 𝑒1) ⋯ ℎ(𝜔𝐿 ∙ 𝑥𝑃 + 𝑒𝐿)

]

𝑃×𝐿

    (17) 

𝐻(𝑥𝑖) = (ℎ(𝜔1 ∙ 𝑥1 + 𝑒1), … , ℎ(𝜔𝐿 ∙ 𝑥1 + 𝑒𝐿))  is the result of hidden neurons that transfer the data from N-

dimensional input space to L-dimensional feature space, with respect to the input x_i. As a result of the fact that 

there are always less hidden neurons than training examples, or P, the smaller norm least square solution of Eq. 

(16) is established by 

𝛽′ = 𝐻†𝑌                           (18) 

While H denotes matrix H's Moore-Penrose generalisation inverse. 𝐻† = 𝐻𝑇(𝐻𝐻𝑇)−1 could be used to determine 

the Moore-Penrose generalisation inverse of H. Positive values 
1

𝜌
  are included in the diagonal element of 𝐻𝐻𝑇 for 

greater generalisation and stability. 

𝑓(𝑥𝑖) = ℎ(𝑥𝑖)𝛽 = ℎ(𝑥𝑖)𝐻𝑇 (
𝐼

𝜌
+ 𝐻𝐻𝑇) 𝑌                    (19) 

A user of ELM is often aware of a feature mapping called ℎ(𝑥𝑖). The kernel matrix for ELM could be determined 

by the user when a feature mapping is unknown.: 

𝛺𝐸𝐿𝑀 = 𝐻𝐻𝑇: 𝛺𝐸𝐿𝑀𝑞,𝑡
= ℎ(𝑥𝑞) ⋅ ℎ(𝑥𝑡) = 𝐾(𝑥𝑞 , 𝑥𝑡)          (20) 

Thus, KLM output is expressed  is expressed by 

𝑓(𝑥𝑖) = ℎ(𝑥𝑖)𝐻𝑇 (
𝐼
𝑝

+ 𝐻𝐻𝑇)
−1

𝑌 = [
𝐾(𝑥𝑖 , 𝑥1)
⋮
𝐾(𝑥𝑖 , 𝑥𝑃)

]

𝑇

(
𝐼

𝑝
+ 𝛺𝐸𝐿𝑀)

−1

𝑌         (21) 
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The index of the output node with the highest values has been defined as the label of the input data. 

IV. EXPERIMENTAL VALIDATION 

In this section, the effectiveness of the suggested method is examined by Apple plant disease and potato plant 

disease datasets [22]. It includes a number of instances under different classes. The dataset contains a set of 1000 

images under each dataset. Python 3.6.5 is used as a tool to simulate the stated technique. 

4.1. Results of the Dataset on Apple Plant Disease 

The proposed model's results analysis on the used dataset for apple pant disease are examined in this section. Test 

picture samples from the dataset are shown in Fig. 4. 

 

Figure 4. Sample Apple Plant Disease Images 

 

Figure 5. Sample results on Apple Dataset a) Original Images b) Pre-processed Images c) Segmented 

Images 
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A sample visualisation results analysis using the applied apple dataset and the suggested strategy is shown in Fig. 

5. The original image, as well as the pre-processed and segmented versions of it, are displayed in Fig. 5a. The 

figures showed that the suggested model successfully pre-processed and segmented the images. 

 

Figure 6. Confusion matrix analysis of DLEN-KLM model on apple plant disease dataset 

Fig. 6 shows the confusion matrix generated by the DLEN-KLM method on the applicable dataset for apple plant 

disease. The results showed that a collection of 864 photos had been categorised using the DLEN-KLM technique 

as Black Rot, 954 images as Cedar Rust, 803 images as Healthy, and 692 images as Scab. 

Table 1 Results of DLEN-KLM approach analysis on dataset of apple plant disease 

Classes Precision Recall Specificity Accuracy F-Score 

Scab 0.8462 0.8640 0.9477 0.9268 0.8550 

Healthy 0.9094 0.9540 0.9683 0.9648 0.9312 

Cedar_Rust 0.7743 0.8030 0.9220 0.8922 0.7884 

Black_Rot 0.7749 0.6920 0.9330 0.8728 0.7311 

Average 0.8262 0.8282 0.9428 0.9141 0.8264 

Table 1 and Fig. 7 exemplify the outcomes of the classification study performed using the DLEN-KLM method on 

the dataset pertaining to apple plant disease. The experimental outcomes denoted that the DLEN-KLM technique 

has effectively classified the images into distinct classes. For instance, with Scab class, the DLEN-KLM algorithm 

has classified the images with the prec. of 0.8462, rec. of 0.8640, specificity of 0.9477, acc. of 0.9268, and F-

measure of 0.8550. Along with that, with Healthy class, the DLEN-KLM system has classified the images with the 

prec. of 0.9094, rec. of 0.9540, specificity of 0.9683, acc. of 0.9648, and F-measure of 0.9312. Followed by, with 

Cedar_Rust class, the DLEN-KLM manner has classified the images with the prec. of 0.7743, rec. of 0.8030, 

specificity of 0.9220, acc. of 0.8922, and F-measure of 0.7884. At last, with Black_Rot class, the DLEN-KLM 

algorithm has classified the images with the prec. of 0.7749, rec. of 0.6920, specificity of 0.9330, acc. of 0.8728, 

and F-measure of 0.7311. 
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Figure 7. Result analysis of DLEN-KLM model with different measures 

 

Figure 8. ROC of Apple Dataset on Proposed Model 

Fig. 8 investigates the ROC analysis of the DLEN-KLM technique on the test apple plant disease dataset. The 

figure portrayed that the DLEN-KLM technique has accomplished effectual outcomes with a maximum AUC of 

0.95. 

Table 2 shows the accuracy comparison of the proposed DLEN-KLM model with currently used methods 

for the dataset for apple leaf disease. 

Methods Accuracy (%) 

DLEN-KLM 91.41 

MobileNet 73.50 

InceptionV3 75.59 

ResNet152 77.65 

ROI-aware DCNN 84.30 

In order to showcase the outstanding performance of the DLEN-KLM technique, a brief comparison study is made 

in Table 2 and Fig. 9 [23, 24]. The obtained results depicted that the DLEN-KLM technique has resulted in 

superior performance with an accuracy of 91.41% whereas the MobileNet, InceptionV3, ResNet152, and ROI-

aware DCNN techniques have resulted in higher accuracy of 73.50%, 75.59%, 77.65%, and 84.30% respectively.  
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Figure 9. Accuracy analysis of DLEN-KLM model with existing techniques 

4.2. Results of the Dataset on Potato Plant Disease 

The proposed model's results analysis on the used dataset for potato pant disease are examined in this section.The 

test image samples from the dataset are shown in Fig. 10. A example visualisation results analysis using the 

suggested technique and the used potato dataset is shown in Fig. 11. The original image as well as its related pre-

processed and segmented images are shown in Fig. 11a. The figures showed that the photos had been expertly pre-

processed and split using the suggested technique. 

 

Figure 10. Sample Potato Plant Disease Images 
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Figure 11. Potato Dataset a) Original Images b) Pre-processed Images c) Segmented Images 

Fig. 12 displays the confusion matrix created by the DLEN-KLM approach on the dataset used to study potato 

plant disease. The outcomes exhibited that the DLEN-KLM technique has classified a set of 871 images under 

Early_Blight, 955 images under Healthy, and 828 images under Late_Blight.  

 

Figure 12. Confusion matrix analysis of DLEN-KLM model on potato plant disease dataset 

Table 3 Results of DLEN-KLM approach analysis on dataset of potato plant disease 

Classes Precision Recall Specificity Accuracy F-Score 

Early_Blight 0.8489 0.8710 0.9225 0.9053 0.8598 

Healthy 0.9409 0.9550 0.9700 0.9650 0.9479 

Late_Blight 0.8634 0.8280 0.9345 0.8990 0.8453 

Average 0.8844 0.8847 0.9423 0.9231 0.8843 

 

In Table 3 and Fig. 13, The DLEN-KLM method outperforms the categorization results analysis on the dataset for 

potato plant disease. The experimental outcomes represented that the DLEN-KLM approach has effectively 

classified the images into varying classes. For instance, with Early Blight class, the DLEN-KLM scheme has 

classified the images with the prec. of 0.8489, rec. of 0.8710, specificity of 0.9225, acc. of 0.9053, and F-measure 

of 0.8598.  
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Figure 13. Result analysis of DLEN-KLM model 

Besides, with Healthy class, the DLEN-KLM system has classified the images with the prec. of 0.9409, rec. of 

0.9550, specificity of 0.9700, acc. of 0.9650, and F-measure of 0.9479. At least, with Late_Blight class, the 

DLEN-KLM technique has classified the images with the prec. of 0.8634, rec. of 0.8280, specificity of 0.9345, acc. 

of 0.8990, and F-measure of 0.8453. 

 

Figure 14. ROC of Potato Dataset on Proposed Model 

Fig. 14 examines the ROC analysis of the DLEN-KLM approach on the test potato plant disease dataset. The 

figure outperformed that the DLEN-KLM methodology has accomplished effectual outcomes with the maximal 

AUC of 0.96. 

Table 4 shows the accuracy comparison of the proposed DLEN-KLM model with currently used methods 

for the dataset for potato leaf disease. 

Methods Accuracy (%) 

DLEN-KLM 93.31 

CNN-SVM 85.18 

CNN-RF 78.24 

CNN-ANN 91.03 

GoogleNet 83.00 

VGGNet 84.26 
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A quick comparison analysis is done in Table 4 and Fig. 15 to show the DLEN-KLM algorithm's exceptional 

performance [25, 26]. The obtained resultant depicted that the DLEN-KLM methodology has resulted in higher 

performance with an accuracy of 92.31% whereas the CNN-SVM, CNN-RF, CNN-ANN, GoogleNet, and 

VGGNet techniques have resulted in increased accuracy of 84%, 79%, 92%, 86%, and 86% correspondingly.  

 

Figure 15. Accuracy analysis of DLEN-KLM model recent approaches 

V. CONCLUSION 

A new DLEN-KLM model is created in this study to identify and categorise plant diseases. The DLEN-KLM 

model consists of several subprocesses, including noise removal based on MF, contrast enhancement based on 

CLAHE, segmentation based on Otsu thresholding, feature extraction based on EfficientNet B0, and classification 

based on KLM. A benchmark dataset was used to validate the DLEN-KLM method's performance, and the 

findings were examined in relation to various evaluation criteria. The experimental findings demonstrated 

improved illness diagnosis over more contemporary methods. To further boost classification performance, the 

hyperparameters of the EfficientNet model can be adjusted in the future utilising metaheuristic methods. 
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