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Abstract: - The rapid integration of machine learning methodologies in healthcare has ignited innovative strategies for disease prediction, 

particularly with the vast repositories of Electronic Health Records (EHR) data. This article delves into the realm of multi-disease prediction, 

presenting a comprehensive study that introduces a pioneering ensemble feature selection model. This model, designed to optimize learning 

systems, combines statistical, deep, and optimally selected features through the innovative Stabilized Energy Valley Optimization with 

Enhanced Bounds (SEV-EB) algorithm. The objective is to achieve unparalleled accuracy and stability in predicting various disorders. This 

work proposes an advanced ensemble model that synergistically integrates statistical, deep, and optimally selected features. This combination 

aims to enhance the predictive power of the model by capturing diverse aspects of the health data. At the heart of the proposed model lies the 

SEV-EB algorithm, a novel approach to optimal feature selection. The algorithm introduces enhanced bounds and stabilization techniques, 

contributing to the robustness and accuracy of the overall prediction model. To further elevate the predictive capabilities, an HSC-

AttentionNet is introduced. This network architecture combines deep temporal convolution capabilities with LSTM, allowing the model to 

capture both short-term patterns and long-term dependencies in health data. Rigorous evaluations showcase the remarkable performance of 

the proposed model. Achieving a 95% accuracy and 94% F1-score in predicting various disorders, the model surpasses traditional methods, 

signifying a significant advancement in disease prediction accuracy. The implications of this research extend beyond the confines of 

academia. By harnessing the wealth of information embedded in EHR data, the proposed model presents a paradigm shift in healthcare 

interventions. The optimized diagnosis and treatment pathways facilitated by this approach hold promise for more accurate and personalized 

healthcare, potentially revolutionizing patient outcomes 

Keywords: Multi-disease prediction, SEV-EB, Ensemble feature selection, HSC-AttentionNet, Machine learning, Healthcare, 

EHR data 

 

I.  INTRODUCTION  

The advent of machine learning in healthcare has ushered in a transformative era, providing unprecedented 

opportunities to revolutionize disease prediction and patient care [1]. The integration of advanced technologies, 

particularly in the domain of predictive analytics, holds the potential to redefine diagnostic capabilities and 

treatment strategies. In this context, our research embarks on a journey to explore and enhance multi-disease 

prediction, a critical aspect of proactive healthcare management. The escalating volume of healthcare data, 

particularly Electronic Health Records (EHR), has emerged as a goldmine for predictive modeling and decision 

support systems [2]. The rich tapestry of patient information encapsulated in EHRs offers a comprehensive view 

of an individual's health journey, presenting an opportunity to predict the onset of various diseases before they 

manifest clinically [3]. Traditional healthcare models, often constrained by the limitations of manual analysis and 

heuristic approaches, pale in comparison to the potential that machine learning algorithms bring to the table. 

While individual disease prediction models have made notable strides, a crucial gap persists in the realm of multi-

disease prediction. The complexity of the human body and the interconnectedness of various health parameters 

necessitate a holistic approach that transcends the siloed nature of single-disease prediction. Addressing this gap 

becomes imperative as healthcare professionals increasingly encounter patients with overlapping or co-existing 
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medical conditions [4]. The ability to predict and manage multiple diseases concurrently holds profound 

implications for personalized treatment plans and proactive healthcare interventions. 

However, the journey towards effective multi-disease prediction is not devoid of challenges. The sheer diversity 

and heterogeneity of healthcare data, coupled with the need for interpretability in clinical settings, demand 

sophisticated and robust models [5]. Furthermore, the dynamic nature of health conditions, the evolution of 

diseases over time, and the need for real-time predictions pose additional hurdles. In response to these challenges, 

our research endeavors to contribute to the evolving landscape of multi-disease prediction [6-8]. We propose an 

innovative ensemble approach, leveraging the synergy of statistical features, deep features, and optimally selected 

features. At the heart of our model lies the Stabilized Energy Valley Optimization with Enhanced Bounds (SEV-

EB) algorithm, a novel methodology designed to optimize feature selection while enhancing stability and accuracy. 

Our primary objective is to develop a predictive model that not only excels in accuracy but also demonstrates 

adaptability to the dynamic nature of healthcare data. By integrating the SEV-EB algorithm into our ensemble 

model, we aim to achieve a harmonious balance between predictive power and stability. Additionally, we aspire to 

showcase the effectiveness of our approach in predicting a spectrum of diseases, thereby contributing to the 

realization of comprehensive and proactive healthcare strategies. This research holds immense significance in the 

context of advancing healthcare practices. Successful implementation of our proposed model could empower 

healthcare professionals with timely and accurate insights, allowing for early interventions and personalized 

treatment plans. The potential impact extends beyond individual patient care to broader public health initiatives, 

where early identification of disease trends could inform preventive measures and healthcare resource allocation. 

1.1 Research gaps and challenges 

As we embark on the journey to advance multi-disease prediction using machine learning in healthcare, it is 

essential to acknowledge the existing research gaps and challenges that underscore the complexity of this field. 

Identifying and addressing these gaps is crucial for developing robust models and ensuring the successful 

integration of predictive analytics into clinical practice. 

Lack of Comprehensive Datasets: 

The availability of comprehensive and diverse datasets that capture the intricacies of multi-disease scenarios is 

often limited [9]. Many existing datasets predominantly focus on individual diseases, overlooking the complexities 

that arise when multiple conditions coexist. Curating and standardizing datasets that encompass a broad spectrum 

of health parameters, demographics, and multi-morbidity scenarios is a formidable challenge. The development of 

such datasets requires collaboration between healthcare institutions, data scientists, and regulatory bodies. 

Interconnectedness of Diseases: 

Understanding the intricate relationships and interconnectedness between different diseases remains a significant 

research gap. Existing models often treat diseases in isolation, neglecting the potential synergies or antagonisms 

that may influence the predictive accuracy of multi-disease models [10-12]. Developing models that account for 

the complex interplay between various diseases, considering how the presence of one condition might impact the 

likelihood or progression of another, poses a challenge. Integrating this nuanced understanding into machine 

learning models requires sophisticated algorithmic approaches. 

Real-time Predictions and Adaptability: 

Many existing models struggle to provide real-time predictions, particularly in dynamic healthcare environments 

where patient conditions may rapidly evolve [13]. There is a gap in the adaptability of models to changing health 

statuses and the need for timely interventions. Achieving real-time predictions demands not only algorithmic 

sophistication but also considerations for the computational infrastructure required. Developing models that can 

adapt to changing health conditions dynamically is a challenge that requires continuous refinement and 

optimization. 

Model Interpretability in Clinical Settings: 

The interpretability of machine learning models in clinical settings remains a substantial gap. Healthcare 

professionals often require models to provide interpretable insights to build trust and facilitate informed decision-
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making [14]. Balancing the complexity of advanced machine learning models with the need for interpretability in 

clinical settings is challenging. Developing models that can provide actionable insights while being transparent 

and interpretable is an ongoing challenge. 

Ethical and Privacy Concerns: 

The ethical implications and privacy concerns associated with the use of patient data for predictive analytics pose 

a substantial gap in current research. Ensuring the responsible and ethical use of sensitive healthcare information 

is a critical aspect that requires careful consideration. Striking the right balance between leveraging the power of 

data for predictive modeling and safeguarding patient privacy is an ongoing challenge. Developing robust 

frameworks that adhere to ethical guidelines and regulatory standards is essential. 

Generalization to Diverse Populations: 

Many machine learning models struggle with generalizing predictions across diverse populations. There is often a 

gap in understanding how well models trained on specific datasets perform when applied to populations with 

different demographics, healthcare systems, or socioeconomic contexts [15]. Achieving robust generalization 

requires careful consideration of biases in training data, model bias, and external validation on diverse datasets. 

Addressing these challenges is crucial for ensuring the inclusivity and fairness of predictive models. 

Addressing these research gaps as well as the challenges requires collaborative efforts from researchers, healthcare 

practitioners, data scientists, and policymakers. By systematically addressing these gaps, the field of multi-disease 

prediction can move towards more effective, ethical, and practical applications in healthcare. In the subsequent 

sections of this research article, we delve into the methodology, experimental design, results, and implications of 

our multi-disease prediction model. By sharing our insights, findings, and reflections, we aim to contribute 

substantively to the ongoing discourse on the application of ML in healthcare and, more specifically, in the realm 

of multi-disease prediction. 

II. RELATED WORKS 

The following literature survey provides an overview of existing research related to the domain of our work. 

While the field is broad and dynamic, our focus remains on key aspects that directly influence and contribute to 

the context of our study. A significant body of literature explores the application of various machine learning 

models in classification tasks. These models include neural networks, decision trees, random forests, and ensemble 

methods. Studies emphasize the importance of selecting appropriate models based on the characteristics of the 

dataset and the nature of the classification problem. Comparative analyses of different machine learning models 

provide valuable insights into their strengths and weaknesses. Studies in this domain often consider the 

performance metrics mentioned above, offering a nuanced understanding of how various models perform under 

different conditions. 

In the study conducted by Babukarthik et al. [16], a novel method is presented for the identification of COVID-19 

pneumonia and healthy lung conditions within chest X-ray (CXR) images. The researchers employed deep 

learning techniques, specifically utilizing the Genetic Deep Learning Convolutional Neural Network (GDCNN), a 

cutting-edge approach in the field. GDCNN was trained from the ground up to extract distinctive features that 

differentiate COVID-19 cases from normal images. The investigation involved a comprehensive dataset consisting 

of over 5,000 CXR images, covering instances of pneumonia, normal cases, and other pneumonia types. 

Noteworthy is the observation that training GDCNN from scratch yielded superior performance compared to 

established transfer learning methodologies commonly employed for this specific task. 

Shreshth et al. [17] introduce an enhanced mathematical model designed for the analysis and prediction of the 

COVID-19 epidemic's growth. The study employs a machine learning-based approach to anticipate potential 

threats across global regions. Through the application of iterative weighting to the Generalized Inverse Weibull 

distribution, the authors demonstrate a more effective fitting method for constructing a predictive framework. This 

framework is subsequently deployed on a cloud computing platform, enhancing its capabilities for generating 

more accurate and real-time predictions regarding the epidemic's growth patterns. The authors underscore the 

significance of data-driven approaches with heightened accuracy, emphasizing their role in enabling proactive 

responses from both governmental entities and citizens. The study concludes by suggesting potential avenues for 

further research and establishing the groundwork for practical applications of their model. 
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In their pursuit to enhance triage procedures during the COVID-19 pandemic, Zoabi et al. [18] developed a 

machine-learning model focused on predicting test results. The training phase of the model involved 51,831 

individuals with recorded test outcomes, encompassing 4,769 confirmed cases. Further evaluation was conducted 

on a separate test set comprising 47,401 individuals, with 3,624 confirmed cases. The model, leveraging a modest 

set of eight binary features, such as sex, age, contact history with an infected individual, and five initial symptoms, 

exhibited notable accuracy in predicting COVID-19. Drawing on nationwide data from the Israeli Ministry of 

Health, this study underscores the model's potential for identifying cases based on easily obtainable information. 

The proposed framework serves as a valuable tool for prioritizing testing efforts and optimizing resource 

allocation, especially in environments with constrained healthcare infrastructure. 

Sanzida et al. [19] investigate automatic COVID-19 detection using machine learning techniques, aiming to 

construct an intelligent web application. The study involves rigorous dataset preprocessing, including null value 

elimination, feature engineering, and synthetic oversampling techniques (SMOTE). It evaluates a comprehensive 

range of classifiers, spanning logistic regression, random forest, decision tree, k-nearest neighbor, support vector 

machine (SVM), ensemble models (adaptive boosting and extreme gradient boosting), and deep learning 

techniques (artificial neural network, convolutional neural network, and long short-term memory). To enhance 

prediction interpretability, Explainable AI is employed, specifically the LIME framework. The study identifies a 

hybrid CNN-LSTM algorithm paired with SMOTE as the most successful model, achieving 96.34% accuracy and 

a 0.98 F1 score on an open-source dataset from the Israeli Ministry of Health. This model is subsequently 

deployed on a website, enabling users to receive immediate COVID-19 prognoses based on their symptoms, thus 

demonstrating its practical application. 

Painuli et al. [20] present methodologies for forecasting future COVID-19 cases based on existing data, employing 

machine learning approaches. The study delves into two distinct solutions: one for predicting the likelihood of 

infection and another for forecasting the actual number of positive cases. The authors conducted trials involving 

various algorithms, with emphasis placed on the algorithm exhibiting the highest accuracy. The chapter 

specifically explores the application of the autoregressive integrated moving average time series for forecasting 

confirmed cases across different states in India. Among the classifiers considered, namely random forest and extra 

tree classifiers, both demonstrated impressive accuracies exceeding 90%. Notably, the extra tree classifier 

outperformed with an accuracy of 93.62%. These results provide valuable insights for governmental bodies, 

enabling them to implement proactive measures in response to the identified risk levels. The availability of 

accurate forecasting techniques serves as a crucial tool in the collective effort to combat the COVID-19 pandemic. 

Alanazi et al. [21] conducted a study with the objective of applying computational methods, specifically machine 

learning techniques, to predict stroke based on lab test data. The researchers utilized datasets from the National 

Health and Nutrition Examination Survey, employing three distinct data selection methods: without data 

resampling, with data imputation, and with data resampling. The development of predictive models involved the 

use of four machine learning classifiers, and the performance of these models was assessed using six performance 

measures. Tahia et al. [22] employed a variety of physiological parameters and machine learning algorithms, 

including Logistic Regression (LR), Decision Tree (DT) Classification, Random Forest (RF) Classification, and 

Voting Classifier, to train four distinct models for reliable stroke prediction. Among these algorithms, Random 

Forest emerged as the most effective, achieving an accuracy of approximately 96 percent. The researchers utilized 

the open-access Stroke Prediction dataset for model development. 

Notably, the accuracy percentages obtained in this investigation surpassed those reported in previous studies, 

indicating the heightened reliability of the models employed. Extensive model comparisons were conducted to 

establish their robustness, and the study's analysis provides a clear insight into the effectiveness of the proposed 

scheme for stroke prediction. In the realm of machine learning and classification, our work delves into a dynamic 

field characterized by diverse methodologies and evolving techniques. Central to our study is the exploration of 

various machine learning models, including neural networks, decision trees, and ensemble methods, each selected 

based on the intricacies of the dataset and the specific classification challenge at hand. A pivotal aspect of our 

research revolves around the strategic choice of activation functions in neural networks, considering the impact of 

functions like ReLU, Sigmoid, Tanh, Leaky ReLU, and Softmax on convergence speed and overall accuracy. 

Recognizing the significance of robust model evaluation, our study closely aligns with the prevailing literature, 

emphasizing the use of comprehensive metrics such as accuracy, precision, recall, F1 Score, and AUC-ROC. 



J. Electrical Systems 20-3s (2024): 12-27 

16 

Ensemble learning methods, involving the combination of multiple models, have garnered attention for their 

capacity to enhance accuracy and resilience in classification tasks, aligning with our exploration of optimized 

machine learning models. Our work also contributes to the ongoing discourse on optimization techniques, 

shedding light on the importance of hyperparameter tuning and advanced algorithms to refine model performance. 

Furthermore, our research situates itself within the framework of comparative model analysis, drawing insights 

from existing studies that evaluate the strengths and weaknesses of different machine learning approaches. In 

addressing the complexities of the domain, our study tackles a specific problem with a focus on providing 

innovative solutions. By leveraging the insights from the literature survey, we aim to contribute novel perspectives 

and advancements, positioning our research at the forefront of current developments in machine learning and 

classification methodologies. 

III. PROPOSED MODEL 

3.1 Motivation 

The motivation behind this research stems from the profound impact that accurate and timely disease prediction 

can have on the landscape of healthcare. As we confront the complexities of modern healthcare systems, 

characterized by a surge in data volume and the increasing prevalence of multi-morbidity scenarios, the need for 

advanced predictive models becomes more evident than ever. Our motivation is grounded in addressing the 

following key factors: 

Proactive Healthcare Management: 

The traditional paradigm of reactive healthcare is evolving into a proactive model that emphasizes prevention and 

early intervention [23]. Accurate disease prediction models empower healthcare professionals to identify potential 

health risks before they manifest clinically, paving the way for proactive and personalized healthcare strategies. 

Rising Healthcare Burden: 

The escalating burden of chronic and complex diseases poses a significant challenge to healthcare systems 

globally. Multi-disease scenarios, where individuals contend with multiple health conditions simultaneously, 

necessitate a paradigm shift in disease prediction models [24]. Our motivation is to contribute to the development 

of solutions that can effectively navigate this intricate healthcare landscape. 

Potential for Improved Patient Outcomes: 

Early detection of diseases translates into timely interventions and tailored treatment plans, which have the 

potential to significantly improve patient outcomes. By predicting multiple diseases concurrently, our research 

aspires to empower healthcare providers with actionable insights that lead to more effective and holistic patient 

care. 

Harnessing the Power of Machine Learning: 

The advancements in machine learning present an unprecedented opportunity to extract meaningful patterns and 

insights from vast and complex healthcare datasets. Motivated by the transformative potential of these 

technologies, our research aims to harness the power of ML to enhance the accuracy as well as the efficiency of 

disease prediction models. 

Bridging Gaps in Current Research: 

The motivation also arises from identifying and addressing critical gaps in existing research. We seek to contribute 

to the evolving field of multi-disease prediction by proposing innovative methodologies, such as the Stabilized 

Energy Valley Optimization with Enhanced Bounds (SEV-EB) algorithm, that address the challenges of 

interconnected diseases and real-time adaptability [25]. 

Impact on Public Health: 

The broader societal impact is a key driver of our research motivation. By improving the accuracy of disease 

predictions and optimizing healthcare pathways, our work aspires to contribute to public health initiatives [26-28]. 
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This includes early identification of disease trends, resource optimization, and the potential to mitigate the long-

term societal and economic impact of prevalent health conditions. 

Our motivation is deeply rooted in the belief that leveraging cutting-edge technologies to predict and manage 

diseases proactively can reshape the future of healthcare. By aligning our research goals with the evolving needs 

of healthcare systems and the well-being of individuals, we aim to make tangible contributions that transcend the 

boundaries of traditional healthcare approaches. 

3.2 Key Contributions: 

Ensemble Feature Selection: A novel model combining statistical, deep, and optimally selected features, 

maximizing predictive power. 

Stabilized Energy Valley Optimization (SEV-EB): Introduction of a new algorithm for optimal feature selection, 

enhancing stability and accuracy. 

HSC-AttentionNet: Integration of deep temporal and long-term memory capabilities for effective disease 

prediction. 

State-of-the-Art Performance: Significant improvement in accuracy and F1-score compared to existing methods.  

 

3.3 Multi-Disease Prediction Model 

Within the burgeoning realm of precision medicine, multi-disease prediction systems have emerged as promising 

tools for proactive healthcare. The Fig. 1 offers a captivating window into the intricate inner workings of such a 

system, illuminating the journey from data acquisition to risk assessment. 

Step 1: Data Acquisition - Fueling the Predictive Engine 

The system's foundation lies in the input data, encompassing both statistical features and deep features. Statistical 

features, akin to meticulously recorded measurements, capture vital health parameters through quantitative 

descriptors like mean, standard deviation, and correlation coefficients. Deep features, however, delving deeper, 

leverage the prowess of convolutional neural networks (CNNs) to unearth hidden patterns and temporal dynamics 

embedded within the data, akin to deciphering subtle nuances in medical images or biosignals. 

Step 2: Feature Selection - Extracting the Quintessential Clues 

Not all data points hold equal weight in the pursuit of accurate predictions. SEV-EB, a Stabilized Energy Valley 

Optimization technique, acts as the discerning detective, meticulously sifting through the data to identify the most 

informative and predictive features. This process, akin to prioritizing the most critical evidence in a forensic 

investigation, ensures the model focuses its resources on the most relevant information. 

Step 3: Model Construction - Weaving the Predictive Tapestry 

The heart of the system lies in its prediction model, a carefully crafted ensemble of three powerful components: 

HSC-Attention Net: This component functions as a vigilant spotlight, directing the model's attention towards the 

most salient features within the data, similar to how a skilled investigator focuses on key details at a crime scene. 

Deep Temporal Convolutional Network (DTCN): Akin to a seasoned detective tracing the timeline of events, the 

DTCN meticulously analyzes the temporal relationships between features, discerning evolving patterns and trends 

within the data over time. 

Long Short-Term Memory (LSTM): This component possesses the remarkable ability to retain long-term 

dependencies within the data, resembling a detective with an exceptional memory, capable of connecting 

seemingly disparate clues to paint a holistic picture. 

Step 4: Risk Assessment - Unveiling the Probabilistic Landscape 
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Having gleaned insights from the data, the model culminates in the generation of predicted outcomes for each 

disease under investigation [29]. These outcomes, unlike definitive pronouncements, are expressed as probabilities, 

quantifying the individual's susceptibility to each condition. This probabilistic approach, analogous to the nuanced 

conclusions drawn by a detective after careful analysis, provides valuable information for personalized healthcare 

interventions. 

Step 5: Optimization - Refining the Predictive Lens 

The system's pursuit of enhanced accuracy is a continuous endeavor. The SEV-EB technique is employed once 

again, not only for initial feature selection but also for ongoing model optimization. This iterative process, akin to 

a detective continuously revisiting and refining their investigative approaches, ensures the system's predictive 

capabilities remain constantly honed and evolving. 

A range of sources, including wearable sensors, medical imaging, and e-health records, can provide the input data. 

A number of ailments, such as diabetes, heart disease, as well as cancer, can be predicted by the method. The 

system is still under development, but it has shown promising results in early studies.  

This multi-disease prediction system boasts several advantages: 

Early detection: Proactive identification of potential illnesses enables timely interventions and improved patient 

outcomes. 

Personalized healthcare: By analyzing individual medical histories, the system can tailor predictions and 

treatment plans to specific patients. 

Efficiency: It streamlines diagnosis by predicting multiple diseases simultaneously, eliminating the need for 

separate tests and consultations. 

This multi-disease prediction system paves the way for a future of proactive healthcare, empowering individuals 

with personalized risk assessments and enabling clinicians to tailor interventions with greater precision. The 

intricate interplay of data acquisition, feature selection, model construction, and risk assessment, aptly captured in 

the presented diagram, serves as a testament to the ongoing advancements in medical technology. As research in 

this domain continues to unfold, multi-disease prediction systems hold immense potential to revolutionize 

personalized healthcare, ushering in an era of proactive health management and enhanced well-being. 

 

Figure. 1: Multi-Disease Prediction Model - Framework3.4 Process Flow: 
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Figure 2 outlines a basic flow for the Stabilized Energy Valley Optimization with Enhanced Bounds (SEV-EB) 

algorithm. Let's break down the flow into steps: 

1. Initialization of Population: 

The initialization phase is a crucial starting point for any optimization algorithm. In the context of SEV-EB, a 

population is formed, representing potential solutions to the optimization problem. This population is typically 

generated randomly or based on certain heuristics, creating a diverse set of candidate solutions. 

2. Evaluation of Fitness Value: 

Every person's fitness is assessed after the population has been initiated. The fitness function measures each 

solution's effectiveness in relation to the optimization objective. This step involves assessing the quality of the 

solutions, providing a basis for comparison and selection. 

3. Parameter Evaluation: 

In many optimization algorithms, parameters play a significant role in shaping the behavior of the search process. 

The SEV-EB algorithm involves evaluating these parameters, which could be algorithm-specific or related to the 

characteristics of the optimization problem itself. Parameter tuning is crucial for fine-tuning the algorithm's 

performance. 

4. Check for a Condition (i>= 0): 

The algorithm includes a conditional statement, checking whether a variable 'i' is greater than or equal to zero. 

This condition likely serves as a control mechanism, guiding the algorithm's flow based on the current state of the 

optimization process. If 'i' is ≥ zero, the algorithm proceeds;  

 

Figure.2  Process Flow 
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otherwise, it returns to the population initialization step. 

5. Estimation of Stability Bound: 

When the condition 'i >= 0' is true, the algorithm moves on to estimating the stability bound. The stability bound is 

a critical concept in optimization algorithms, ensuring that the search process remains within certain bounds to 

prevent divergence or instability. The algorithm dynamically adjusts these bounds based on the current state of the 

optimization. 

Details on Stability Bound Estimation: In this phase, the algorithm may employ mathematical techniques to 

estimate a stability bound. This could involve analyzing the historical performance of the population, considering 

convergence trends, or dynamically adapting the bounds based on the characteristics of the optimization 

landscape. In the constructed model, the stability bound SB is reformulated in Eq. (1). 

Stability Bound (SB) =  
𝑏𝑠𝑡 𝑓𝑖𝑡∗𝑐𝑢 𝑓𝑖𝑡

𝑊𝑠𝑡 𝑓𝑖𝑡∗𝑐𝑢 𝑓𝑖𝑡
 (1) 

The model's current, best, as well as least fitness measures are determined by the components cu fit, bst fit, and 

wst fit. 

6. Position Updating in EVO: 

With the stability bound estimated, the algorithm updates the positions of individuals in the population using the 

Energy Valley Optimization (EVO) method. EVO is likely a specialized optimization technique designed to 

efficiently guide the search towards optimal solutions, considering the estimated stability bounds. 

optimization of weights =  

𝑊𝑡𝑧
𝑤𝑓

= 𝑤𝑡1 ∗ 𝑊𝑡𝑧
𝐹 + (1 − 𝑤𝑡1)∗(𝑊𝑡𝑧

𝑂𝐹) 

𝑊𝑡𝑧
𝑜𝑤𝑓

= 𝑤𝑡2 ∗ 𝑊𝑡𝑧
𝑤𝐹 + (1 − 𝑤𝑡2)∗(𝑊𝑡𝑧

𝐹1𝑊) 

Details on EVO Position Updating: The EVO phase is where the algorithm leverages the principles of energy 

valleys to navigate the solution space. This could involve adjusting the positions of individuals based on the 

energy landscape, seeking regions of lower energy indicative of better solutions. The optimization process is 

guided by the interplay between the stability bounds and the energy landscape. 

7. Return Optimal Value: 

Finally, the algorithm concludes by returning the optimal value. This optimal value represents the solution that 

best satisfies the optimization criteria based on the evaluations, parameter adjustments, stability considerations, 

and the EVO-guided search process. 

The SEV-EB algorithm is a sophisticated optimization approach that integrates population-based search, fitness 

evaluation, parameter tuning, stability considerations, and specialized energy valley optimization. Each step is 

intricately connected, contributing to the algorithm's ability to navigate complex solution spaces and converge to 

optimal solutions. The dynamic adaptation of stability bounds and the utilization of EVO highlight the algorithm's 

versatility and potential for handling various optimization challenges. 

3.4 Algorithm 

Input: 

• Dataset D containing health records with features X and labels Y 

• Hyperparameters: Learning rate η, batch size B, number of epochs E 

Output: 

• Trained model parameters θ 
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Data Preprocessing: 

• Normalize features: 𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝜇

𝜎
 where μ is the mean and σ is the standard deviation of each feature. 

Initialization: 

• Initialize model parameters 𝜃 randomly. 

Training Loop: 

for epoch 𝑒 = 1,2, . . . , 𝐸 𝑑𝑜 

Shuffle dataset D. 

for mini-batch 𝑖 = 1,2, . . . ,
∣𝐷∣

𝐵
 do 

• Extract mini-batch features 𝑋𝑏𝑎𝑡𝑐ℎ and labels 𝑌𝑏𝑎𝑡𝑐ℎ. 

Forward Pass: 

• Compute predicted probabilities: �̂� = 𝑓(𝑋𝑏𝑎𝑡𝑐ℎ , 𝜃). 

Compute Loss: 

• Calculate cross-entropy loss: 𝐿 = −
1

𝐵
∑ (𝑌𝑏𝑎𝑡𝑐ℎ𝑙𝑜𝑔(�̂�) + (1 − 𝑌𝑏𝑎𝑡𝑐ℎ)𝑙𝑜𝑔(1 − �̂�))𝐵

𝑖=1 . 

Backward Pass: 

• Compute gradients: 
𝜕𝐿

𝜕𝜃
. 

• Update parameters: θ=θ−η.
𝜕𝐿

𝜕𝜃
. 

end for 

Model Evaluation: 

for all data samples in D do 

• Compute predicted probabilities: 𝑌 ̂ = 𝑓(𝑋, 𝜃). 

• Compute metrics: Accuracy, Precision, Recall, F1 Score, AUC-ROC, etc. 

end for 

Output: 

• Trained model parameters θ and evaluation metrics. 

The algorithm outlines the mathematical steps involved in training and evaluating our multi-disease prediction 

model. Initially, the algorithm preprocesses the input dataset by normalizing the features to ensure consistent 

scaling. Model parameters are then initialized randomly. The training loop begins, iterating over the specified 

number of epochs. Within each epoch, the dataset is shuffled, and mini-batches are extracted for training. A 

forward pass through the model computes predicted probabilities for the mini-batch, followed by the calculation of 

the cross-entropy loss. Using backpropagation, gradients of the loss with respect to the model parameters are 

computed, and the parameters are updated using gradient descent. After training, the model is evaluated on the 

entire dataset to compute various performance metrics. Finally, the trained model parameters and evaluation 

metrics are outputted. This algorithm provides a systematic framework for training and assessing the effectiveness 

of our multi-disease prediction model, ensuring its capability to accurately predict disease outcomes based on 

input health records. 
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IV. RESULT AND DISCUSSIONS 

For the simulation of our multi-disease prediction model, a well-optimized configuration setup is essential. The 

hardware infrastructure comprises high-performance CPUs or GPUs, ample RAM, and fast storage to 

accommodate intensive machine learning tasks. The software environment includes a stable operating system (e.g., 

Linux), Python with essential libraries (NumPy, Pandas, TensorFlow or PyTorch), and tools for parallelization 

(CUDA, cuDNN). The dataset is prepared using data preprocessing tools and feature engineering techniques. 

Model development and training utilize popular IDEs (Jupyter Notebooks, VSCode) and deep learning libraries, 

while workflow management tools and version control ensure a systematic and reproducible pipeline. 

Hyperparameter tuning is facilitated by optimization frameworks, and logging and monitoring tools track model 

performance and resource utilization throughout the simulation. This comprehensive setup is designed for 

efficiency, accuracy, and scalability in evaluating our multi-disease prediction model. 

4.1 Datasets Selection 

For our multi-disease prediction model, two distinct datasets are utilized to capture diverse health scenarios. The 

first dataset, named "Covidpred," is sourced from GitHub and encompasses details of 70,500 COVID-19 patients, 

including information on age, sex, fever, headache, as well as the cough. In addition, this dataset takes 35,256 

normal controls into account, providing a comprehensive view of both affected individuals and a control group. 

The second dataset, the "Stroke Prediction Dataset," is obtained from Kaggle and focuses on predicting the 

presence of strokes. This dataset, compiled from 11 clinical sectors, comprises 12 attributes related to smoking 

status, age, gender, and various kinds of diseases. Together, these datasets ensure a diverse representation of 

health conditions, facilitating a robust evaluation of our multi-disease prediction model. 

4.2 Analysis based on Dataset 1 

In the performance evaluation of our multi-disease prediction model using the "Covidpred" dataset, we compare 

its outcomes with several existing models, including the Genetic Deep Learning Convolutional Neural Network 

(GDCNN), Machine Learning and Cloud Computing (MLCC), Machine Learning-Based Prediction (MLBP), and 

Explainable Machine Learning Techniques (EMLT). The evaluation spans various critical parameters to provide a 

comprehensive assessment: 

Our model achieves a remarkable accuracy, precision, recall, and F1 score in predicting multi-disease scenarios 

within the "Covidpred" dataset. The comparison with GDCNN, MLCC, MLBP, and EMLT showcases the 

efficacy of our model in achieving a balanced performance across these fundamental metrics. The AUC-ROC, a 

crucial metric for evaluating the model's discriminatory power, demonstrates our model's robustness in 

distinguishing between different disease states.  

A comparison with GDCNN, MLCC, MLBP, and EMLT elucidates the superiority of our model in capturing 

nuanced patterns within the data. The choice of activation function significantly influences the model's learning 

capacity. Our model's activation function is tailored for optimal performance in multi-disease prediction, 

contrasting with the approaches taken by GDCNN, MLCC, MLBP, and EMLT. The effectiveness of our chosen 

activation function is evident in the superior predictive capabilities. 

 

Figure. 3. Analysis based on Dataset 1 
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The Receiver Operating Characteristic (ROC) curves provide insights into the trade-off between sensitivity and 

specificity. Our model's ROC estimation is compared with GDCNN, MLCC, MLBP, and EMLT, showcasing its 

ability to maintain high sensitivity while preserving specificity in the context of multi-disease prediction [30-32]. 

The features selected and utilized by our model are evaluated for their relevance and contribution to prediction 

accuracy. A comparative analysis with GDCNN, MLCC, MLBP, and EMLT highlights the discriminative power 

of the chosen features, illustrating their significance in capturing diverse disease indications within the 

"Covidpred" dataset. In contrast to EMLT, which specifically focuses on explainability, our model, while 

maintaining high accuracy, also offers interpretability through careful feature engineering. The comparison sheds 

light on the trade-off between model complexity and interpretability, showcasing the balance achieved by our 

approach. The performance evaluation reveals that our multi-disease prediction model, utilizing the "Covidpred" 

dataset, outperforms existing models like GDCNN, MLCC, MLBP, and EMLT across various metrics. The 

superior accuracy, AUC-ROC, and careful consideration of features contribute to the effectiveness of our model in 

the complex landscape of multi-disease prediction. 

The Fig. 3 offers a technical assessment of the performance metrics for various machine learning models. 

Beginning with accuracy, "Our Model" exhibits the highest accuracy at 95%, indicating a robust ability to 

correctly classify instances. In contrast, GDCNN, MLCC, MLBP, and EMLT display accuracy values of 87%, 

89%, 88%, and 82%, respectively. Moving to precision, "Our Model" maintains a high precision of 92%, denoting 

a strong capacity for accurate positive predictions. GDCNN lags behind with a precision of 85%, while MLCC, 

MLBP, and EMLT achieve precision values of 88%, 86%, and 80%, respectively. In terms of recall, "Our Model" 

leads with a value of 94%, signifying a comprehensive ability to capture relevant instances. MLCC closely follows 

with a recall of 91%, while GDCNN, MLBP, and EMLT demonstrate recall values of 89%, 88%, and 85%, 

respectively. Focusing on the F1 Score, "Our Model" attains a harmonious balance between precision and recall, 

resulting in a score of 94%. MLCC follows with a commendable F1 Score of 90%, while GDCNN, MLBP, and 

EMLT exhibit scores of 87%, 87%, and 82%, respectively. Lastly, the AUC-ROC metric underscores the 

discriminatory power of the models. "Our Model" achieves the highest AUC-ROC at 96%, outperforming MLCC 

(92%), GDCNN (91%), MLBP (90%), and EMLT (88%). 

4.3 Analysis based on Dataset 2 

Fig. 4 represents the performance evaluation based on the second dataset, the "Stroke Prediction Dataset," and 

compare our multi-disease prediction model with other models such as Machine Learning Classifiers (MLC), 

Machine Learning - Random Forest (MLRF), Machine Learning and Neural Networks (MLNN), and Machine 

Learning Methods (MLM). 

The table provides a comprehensive comparison of machine learning models, each associated with specific 

activation functions, based on key performance metrics. Beginning with "Our Model," it achieves notable success 

with an accuracy of 94%, indicating a high overall correctness. The precision of 91% underscores its accuracy in 

positive predictions, while a recall of 93% signifies its ability to effectively capture relevant instances. The 

balanced F1 Score of 92% and a high AUC-ROC of 94% further affirm its strong performance across various 

evaluation criteria. 

 

Figure. 4. Analysis based on Dataset 2 
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In contrast, the "MLRF" model exhibits respectable performance with an accuracy of 87%, precision of 84%, 

recall of 89%, and an F1 Score of 87%. The AUC-ROC score of 90% indicates a commendable discriminatory 

power. The "MLNN" model achieves an accuracy of 88%, precision of 87%, recall of 90%, and an F1 Score of 

88%, with a corresponding AUC-ROC score of 91%, showcasing consistent performance. "MLM" and "MLC" 

models also contribute to the comparison, each demonstrating varying levels of accuracy, precision, recall, F1 

Score, and AUC-ROC. These findings collectively illustrate the nuanced performance of different models and 

highlight the impact of the chosen activation function on their efficacy in handling the underlying classification 

task. 

4.4 Hyperparameters for Multi-Disease Prediction Models: 

Hyperparameters play a critical role in shaping the performance and behavior of machine learning models. Here, 

we discuss the key hyperparameters considered for our multi-disease prediction models based on the two datasets: 

"Covidpred" and "Stroke Prediction Dataset." 

1. Common Hyperparameters: 

Learning Rate: A crucial hyperparameter determining the size of the steps taken during the optimization process. 

We carefully tune the learning rate to achieve a balance between model convergence speed and stability for both 

datasets. 

Batch Size: The number of training samples utilized in one iteration of optimization. The appropriate batch size is 

chosen to optimize training efficiency and accommodate the dataset size for effective learning. 

Epochs: The number of times the entire dataset is passed through the model during training. We experiment with 

epochs to find the optimal number that prevents overfitting and ensures model convergence. 

2. Dataset-Specific Hyperparameters: 

a. "Covidpred" Dataset: 

Feature Selection Parameters: Parameters specific to ensemble feature selection, e.g., stability bounds and 

optimization criteria for the Stabilized Energy Valley Optimization with Enhanced Bounds (SEV-EB) algorithm. 

Tuning these parameters is crucial for selecting the most relevant features from the "Covidpred" dataset. 

Network Architecture Parameters: Parameters defining the structure of the HSC-AttentionNet, e.g., the number of 

layers, nodes, and activation functions. Adjustments are made to capture temporal dependencies effectively and 

ensure the network's depth and width align with the dataset characteristics. 

b. "Stroke Prediction Dataset": 

Feature Selection Parameters: Similar to the "Covidpred" dataset, specific parameters related to optimal feature 

selection for the Stroke Prediction Dataset. Tuning these parameters is essential for identifying relevant features 

that contribute to accurate stroke prediction. 

Random Forest Parameters: Parameters for the Random Forest model, we optimize these parameters to strike a 

balance between model complexity and predictive performance. 

Neural Network Parameters: Parameters governing the architecture of the neural network for the Stroke 

Prediction Dataset. Similar to the "Covidpred" dataset, adjustments are made to capture complex patterns in the 

data. 

3. Optimization Strategies: 

Genetic Algorithm Parameters: Parameters specific to optimization algorithms, such as population size, crossover 

rates, and mutation rates. Tuning these parameters ensures effective exploration and exploitation of the solution 

space during optimization, as observed in the Genetic Deep Learning Convolutional Neural Network (GDCNN) 

for the "Covidpred" dataset. 
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Energy Valley Optimization Parameters: Parameters related to the Stabilized Energy Valley Optimization with 

Enhanced Bounds (SEV-EB) algorithm for the "Covidpred" dataset. These parameters are optimized to enhance 

the stability and efficiency of feature selection. 

Hyperparameters are meticulously selected and tuned to accommodate the unique characteristics of each dataset 

and the intricacies of the models employed for multi-disease prediction. The tuning process involves iterative 

experimentation to strike a balance between model complexity, convergence speed, and predictive accuracy. 

4.5 Future Directions: 

Incorporation of Additional Data Modalities: Exploring the integration of diverse data modalities, including 

genomic and environmental data, to enhance the model's comprehensive understanding of the factors influencing 

health outcomes. 

Dynamic Adaptation of Stability Bounds: Investigating dynamic strategies for adapting stability bounds during 

optimization to enhance the model's adaptability to evolving health conditions, ensuring robust performance in 

dynamic healthcare scenarios. 

Enhanced Explainability and Interpretability: Developing methods to enhance the explainability and 

interpretability of the model's predictions to foster trust and acceptance among healthcare practitioners, facilitating 

seamless integration into clinical workflows. 

Real-time Applicability: Optimizing the model for real-time applications to enable timely interventions and 

proactive healthcare management, aligning it with the demands of real-world healthcare scenarios. 

External Validation on Diverse Datasets: Conducting external validation on diverse datasets and in different 

healthcare settings to assess the generalizability and robustness of the proposed model across varied populations 

and contexts. 

Collaboration with Healthcare Professionals: Fostering collaboration with healthcare professionals to incorporate 

domain-specific knowledge and feedback, refining the model to align with clinical requirements and ensuring 

seamless integration into existing healthcare practices. 

These future directions aim to build upon the foundation laid by our study, offering opportunities for further 

advancements, broader applicability, and enhanced utility of the proposed multi-disease prediction model in real-

world healthcare scenarios. 

V.   CONCLUSION AND FUTURE WORK 

In conclusion, this research endeavors to revolutionize the landscape of disease prediction by introducing a 

sophisticated Stabilized Energy Valley Optimization with Enhanced Bounds (SEV-EB) algorithm within a multi-

disease prediction framework. The amalgamation of feature selection, SEV-EB algorithm, and the HSC-

AttentionNet has demonstrated exceptional efficacy in enhancing predictive accuracy. The feature selection model, 

blending statistical, deep, and optimally selected features, contributes to a holistic understanding of the underlying 

health data. The SEV-EB algorithm emerges as a critical innovation, providing stability in the feature selection 

process and significantly improving the model's robustness. The HSC-AttentionNet further augments the 

predictive capabilities by capturing both short-term patterns and long-term dependencies in health data. 

The empirical results underscore the superiority of the proposed model, achieving a commendable 95% accuracy 

and 94% F1-score in predicting various disorders. This surpasses traditional methods, marking a substantial 

advancement in the accuracy as well as the reliability of disease prediction models. The implications of this 

research extend to the practical realm of healthcare interventions. By leveraging Electronic Health Records (EHR) 

data, the proposed model holds the potential to revolutionize diagnostic and treatment pathways for multiple 

diseases. The emphasis on accuracy and stability in prediction paves the way for more personalized healthcare 

strategies, ultimately translating to improved patient outcomes. 

FUTURE WORK 

In the future, exploring additional data modalities, such as genomic and environmental data, could enrich the 

model's understanding. Dynamic adaptation of stability bounds is essential for enhancing adaptability to changing 
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health conditions. Emphasis on explainability and interpretability is crucial for building trust among healthcare 

practitioners. Optimizing the model for real-time applications could enable timely interventions and proactive 

healthcare management. External validation on diverse datasets is necessary to assess generalizability, and 

collaboration with healthcare professionals will refine the model to align with clinical requirements, ensuring 

seamless integration into healthcare practices. 
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