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Abstract: - Activity recognition plays pivotal role in enhancing functionality for prosthetic devices, ensuring seamless integration with 

users' movements. However, the complexity arises from the diverse data sources, including acceleration, angular velocity, joint angles, 

orientation, electromyography (EMG), and marker data, necessitating a robust approach to overcome challenges in information integration. 

The primary challenge lies in the effective utilization of multiple sensor modalities, each with unique characteristics and potential noise 

sources. The proposed solution addresses this by employing advanced sensor fusion techniques, such as Kalman filtering, during data 

collection. Synchronization and resampling ensure temporal consistency, while noise reduction techniques, such as low-pass filters, mitigate 

signal distortions. To further refine the process, a hybrid optimization-based feature selection Adaptive Step Size in Marine Predators 

Algorithm (ASSMPA) is introduced, focusing on marker data features. ASSMPA synergizes Marine Predators Algorithm (MPA) and 

Pathfinder Algorithm (PFA) for optimal feature selection in marine predator pathfinding tasks. The Feature Fusion step integrates attention 

mechanisms to dynamically weigh the significance of different sensor modalities during the fusion process. This strategic fusion enhances 

the overall performance of the Multi-Modal Hierarchical Neural Network (MMHNN). The proposed model is implemented using Python. 

Keywords: Lower Limb Prosthetics; Kalman Filtering; ASSMPA; MPA; PFA; MMHNN. 

I. INTRODUCTION 

In the area of lower limb prosthetics, the quest of seamlessly blending artificial limbs with the natural rhythm of 

human movement has fuelled a wave of innovation. The intricate dance between man and machine requires a 

profound understanding of user intent, and at the heart of this understanding lies the pivotal concept of activity 

recognition [1,2]. This paper delves into the transformative landscape of activity recognition in lower limb 

prosthetics, where technological strides intersect with the human experience, reshaping the possibilities for those 

seeking enhanced mobility [3]. The rising incidence of lower limb amputations, attributed to diverse factors such as 

chronic diseases and accidents, has underscored the need for prosthetic solutions that go beyond mere functionality 

[4,5]. Restoring a sense of natural, intuitive movement has become a paramount goal, pushing researchers to explore 

novel avenues in the field of activity recognition [6]. Unlike traditional prosthetics, which often operate in a passive 

mode, contemporary lower limb prosthetics are undergoing a paradigm shift by embracing active control 

mechanisms [7,8]. This shift not only marks a departure from convention but holds the promise of empowering 

users with unprecedented control over their prosthetic limbs. 

At the core of this evolution is the human-machine interface, a complex interplay where user intention meets 

technological prowess [9,10]. Traditional methods of activity recognition, relying heavily on surface 

electromyographic signals (sEMGs), have encountered challenges that necessitate a re-evaluation of approaches 

[11]. The journey from sEMGs to alternative mechanical sensors, including accelerometers, gyroscopes, and 

pressure sensors, reflects the ongoing endeavour to enhance the reliability and accuracy of activity recognition 

systems [12,13]. The significance of this pursuit extends beyond the technical intricacies of signal processing and 

sensor fusion; it encapsulates the essence of restoring not just mobility but a holistic sense of autonomy and 

participation in daily life. Individuals with lower limb amputations aspire not merely to move but to move 

seamlessly, adapting to diverse terrains, adjusting gait parameters, and effortlessly transitioning between various 

activities [14]. This aspiration propels the research community to explore innovative avenues that decode the 

intricacies of human motion intention. While challenges persist, including the nuances of muscle fatigue and the 

variability in contraction force, recent strides in prosthetic technology underscore the feasibility of achieving real-

time and intuitive control [15]. The fusion of pattern recognition techniques with advanced sensor technologies 

opens new frontiers, paving the way for prosthetics that respond dynamically to the user's environment and intent. 

The primary contribution of this research work is: 
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• To implement hybrid optimization-based feature selection, the process includes extraction of coordinate 

features with marker data and incorporation of a hybrid optimization algorithm, ASSMPA. 

• To dynamically weigh the importance of different sensor modalities, attention mechanisms are introduced 

in the feature fusion process. This step allowed for dynamic weighting at each time step, enhancing the 

adaptability of the system. 

• To advance active lower limb prosthetics recognition, MMHNN is introduced. This network integrated an 

Long Short-Term Memory (LSTM) model, Incremental Dilations CNN model, attention-based model, and 

a dense neural network in a hierarchical structure. 

• To optimize information fusion, attention mechanisms were implemented at the LSTM and Incremental 

Dilations CNN layers. These mechanisms dynamically weighed the importance of information, facilitating 

effective feature fusion based on attention weights. 

The following is the arrangement of the remaining sections: The research and literature reviews that are relevant to 

the topic are covered in Section 2. The suggested framework is talked about in Section 3. Section 4 describes the 

outcomes that were recorded while Section 5 concludes this study. 

II.  LITERATURE REVIEW 

In 2020, Li et al. [16] proposed a unique approach for identifying bicycling stages in lower limb amputees utilizing 

a Support Vector Machine (SVM) enhanced by Particle Swarm Optimization (PSO). Wireless accelerometers then 

knee joint angle sensor in prosthesis collect information, filtered with a soft-hard threshold to reduce noise. This 

method enhances prosthetic knee joint control during bicycling. 

In 2019, Wang et al. [17] used a novel time–frequency feature extraction method, Microelectromechanical systems 

(MEMS) inertial measurement unit (IMU) captures periodic inertial data on the prosthesis. Fractional Fourier 

transform (FRFT) is applied for feature extraction, constructing an eight-feature vector. Experimental results show 

improved classification efficiency and reduced hardware computation requirements. 

In 2022, Pergolini et al. [18] introduce an innovative locomotion realization algorithm for Active Pelvis Orthosis, 

aiming for enhance the walking patterns of lower-limb amputees. The algorithm, tested in real-time circumstances 

with four transfemoral amputees, combines rule-based and linear discriminant analysis classifiers to accurately 

identify quasi-static and dynamic locomotion modes.  

In 2022, Lv et al. [19] focused on knee joint trajectory planning for lower limb prostheses, introducing a novel 

approach through experimental data mining. Coordination indexes, including mean absolute relative phase (MARP) 

and deviation phase, reveal a steady stage variance between hip and knee motions. A Motion-Lagged Coordination 

Mapping (MLCM) is established, utilizing  polynomial model for efficient mapping from lagged hip to knee motion. 

The MLCM offers simplified and robust knee trajectory generation for prosthesis control based solely on healthy 

limb hip motion. 

In 2020, Kim et al. [20] investigated clinical feasibility for utilizing wearable sensors to evaluate functional mobility 

for individuals by lower limb amputation. Involving 17 amputees and 14 non-amputee controls, the research uses 

IMU and global positioning system (GPS) data about two weeks to assess cadence, walking speed, and stride lengths 

in various settings.  

In 2022, Nordin et al. [21] used a Magnetorheological Fluid (MRF) damper for reducing ground reaction force 

impact during heel strikes. Emphasizing an energy-efficient design for prolonged battery life, the research 

investigates different MRF properties and magnetic particle volume contents. Results demonstrate that a higher 

solid weight percentage in MRF yields more significant damping force with reduced applied current, supporting 

execution for energy-efficient MRF damper in prosthetic limbs using Fuzzy-PID controller. 

In 2023, Hu et al. [22] investigated lower-limb cooperation in entities by unilateral transfemoral amputation (UTFA) 

during walking, employing continuous relative phase (CRP) analysis. Fourteen UTFA participants and age-matched 

non-invalid persons contributed. Coordination patterns revealed compensatory strategies, with distinctive traits 

thigh-shank coupling over stance and swing stages. Shank-foot coupling indicated compensatory foot-leading 

patterns in intact limbs during mid-stance to address prosthetic limb force generation limitations. 
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In 2023, Mishra et al. [23] addressed the challenge of estimating corrective torque needed for postural balance in 

unilateral lower limb amputees (LLAs) over weight-shifting trainings. Using an inverted pendulum (IP) model based 

on healthy individuals' dynamics, a Relative Integral Derivative controller is planned to evaluate corrective torque. 

The proposed control scheme is validated through simulations, aiding in understanding and addressing postural 

stability issues in LLAs and contributing to the development of cost-effective prosthetic solutions for rehabilitation 

in developing countries. 

In 2021, Stolyarov et al. [24] presented progress and offline confirmation for heuristic algorithm of exact forecast 

for ground territory in lower limb prothesis. Utilizing a single inertial measurement unit, the heuristic method, based 

on prosthetic limb kinematics, achieved a low complete prediction fault of 2.8%, outperforming machine learning 

approaches. 

In 2022, Vijayvargiya et al. [25] developed hybrid deep learning models for this purpose, incorporating discrete 

wavelet transform for noise suppression and employing convolutional neural networks of sequential learning, 

alongside long short-term memory or gated recurrent units of ordered learning. 

2.1. Problem Statement 

The increasing aging population worldwide has highlighted the need for effective fall detection systems to mitigate 

the severe health consequences associated with falls among the elderly. Existing systems often exhibit limitations 

regarding accuracy, adaptability, then robustness. Challenges arise from complexity for capturing nuanced human 

movements, variations in environmental conditions, and the dynamic nature of daily activities [5,11]. Conventional 

methods often struggle to discern between normal activities and genuine fall events, leading to false alarms or 

missed detections [20]. Additionally, there is a need for comprehensive systems that integrate advanced techniques 

for data augmentation, feature extraction, and optimized feature selection. The lack of a unified approach 

incorporating spatial and temporal information delayed the development of a reliable and efficient fall detection 

system. Addressing these challenges is crucial for the successful implementation of a fall detection solution that 

ensures timely intervention, thereby significantly impacting the overall well-being of the elderly population. 

III. PROPOSED METHODOLOGY 

The integration of sensor fusion and a multi-modal hierarchical neural network in lower limb prosthetics enhances 

activity recognition. Implementing integrated sensor fusion and multi-modal hierarchical neural networks for lower 

limb prosthetics faces challenges such as computational complexity, data misalignment, and the requirement for 

substantial training data, impacting the balance between accuracy and real-time processing. Sensor fusion combines 

data from diverse sensors like accelerometers and myoelectric sensors, providing a complete view of user 

movements. The multi-modal hierarchical neural network processes this fused data, allowing the prosthetic device 

to recognize and adapt to various activities, improving functionality and user experience. Fig. 1 depicts the overall 

proposed architecture. 

3.1. Data Collection 

The dataset comprises gait analysis data from 14 Syrian above-knee amputees and 20 healthy subjects. It includes 

diverse files detailing subject information, spatio-temporal limits, lower limb joint angles, ground reaction force 

components, and lower limb joint moments. The data were collected using an optoelectronic system equipped with 

six cameras and two force  platforms, with a sampling rate of 200Hz. The analysis followed a three-step process 

involving subject preparation, raw data acquisition during standing and walking trials, and subsequent calculation 

of gait parameters. The dataset, published on May 25, 2021, is associated with a DOI (Digital Object Identifier) and 

is available under Creative Commons Attribution 4.0 International License. The research was carried out[RP] at 

Damascus University and contributes valuable insights to the fields of biomedical engineering, gait analysis, 

amputation of lower limbs, and prosthetics. 
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Figure 1: Overall Proposed Architecture 

3.1.1. Kalman Filtering[RP] 

In this study, advanced sensor fusion techniques, specifically Kalman filtering, were employed to seamlessly 

integrate data from multiple sensors. The dataset includes diverse data types: acceleration (Acc), angular velocity 

(Gyr), joint angles (Ang), orientation (Ori), electromyography (EMG), and marker data (Mrk). In medical imaging, 

the presence of Salt and Pepper noise significantly impacts the performance of detection and classification methods. 

Consequently, this issue is effectively addressed through the implementation of a highly efficient Kalman filtering 

technique. Kalman filter, a recursive algorithm used for estimating and predicting the state of a dynamic system 

observed through noisy measurements. This adaptability allows the filter to better account for changing conditions 

and uncertainties, resulting in improved accuracy and performance. The primary goal of Kalman filtering is to 
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update the filter's estimates and covariance matrices in real-time, ensuring that the filter remains well-calibrated to 

the evolving system dynamics. This is especially valuable when the system's characteristics vary over time or are 

not fully known. The Kalman filter involves two main steps in each iteration as given in Eq. (1) to Eq. (5). 

1. Prediction step 

Predicted state estimate: �̂�𝑘|𝑘−1 = 𝐹𝑘�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘  (1) 

Predicted error covariance: 𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑡 + 𝑄𝑘  (2) 

2. Update step 

Kalman gain: 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑡 (𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑡 + 𝑅𝑘)−1  (3) 

Corrected state estimate: �̂�𝑘|𝑘 =  �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘 �̂�𝑘|𝑘−1) (4) 

Corrected error covariance: 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1  (5) 

Kalman filtering distinguishes itself through the dynamic adjustment of matrices 𝑄𝑘 (representing process noise 

covariance) and 𝑅𝑘 (representing measurement noise covariance) based on the alignment between the filter's 

predictions and actual measurements. This adaptability is achieved through techniques like recursive least squares, 

covariance matching, or gradient-based approaches. This flexibility in parameter adaptation empowers the filter to 

sustain accurate state estimates even in the face of changing system behavior or uncertainties. Continuous parameter 

adjustments enable adaptive Kalman filtering to excel in tracking and estimating the evolving state of dynamic 

systems, making it a versatile asset across a range of applying.  

3.2. Pre-Processing 

In this study, the preprocessing of data involves essential steps such as data cleaning to address inconsistencies, data 

normalization for standardization, and handling null values to ensure completeness.  

3.2.1. Data Cleaning 

Data cleaning is a essential phase in preparing a dataset for analysis, in the activity recognition in lower limb 

prosthetics. This process involves systematic identification and rectification of inconsistencies, errors, and missing 

values to ensure dataset reliability and accuracy. By scrutinizing each data point for outliers and cross-referencing 

against medical guidelines, discrepancies are addressed, enhancing the dataset's integrity. Missing values are 

handled through imputation techniques like mean or regression imputation, maintaining data completeness. 

Standardizing data formats and ensuring feature consistency eliminate disparities in units or scales, fostering 

accurate analysis. Thorough data cleaning establishes a solid foundation for subsequent modeling and analysis, 

enabling the development of effective risk assessment tools and interventions. 

3.2.2. Data Normalization 

Data normalization is the important preprocessing methodology employed to manipulate and regulate the numerical 

attributes of a given dataset. The principal impartial is to equalize all the attributes to a comparable scale, thereby 

averting the ascendency of certain attributes over others when training the model. 

Several forms of normalization methods are presented. we have compared three normalization methods namely 

Min-Max, Z-Score, and Decimal Scaling normalization. 

1) Min-Max Normalization: 

The unique data is revised progressively through min-max normalization. Inside the specified choice, the values are 

normalized. The calculation is as follows for translating w value for an trait B from a range [𝑀𝑖𝑛𝐵, 𝑀𝑎𝑥𝐵] toward 

new range [𝑁𝑒𝑤_𝑀𝑖𝑛𝐵, 𝑁𝑒𝑤_𝑀𝑎𝑥𝐵] and present as per the Eq. (6) 

                                         
𝑤−𝑀𝑖𝑛𝐵

𝑀𝑎𝑥𝐵−𝑀𝑖𝑛𝐵
(𝑁𝑒𝑤_𝑀𝑎𝑥𝐵 − 𝑁𝑒𝑤_𝑀𝑖𝑛𝐵)𝑁𝑒𝑤_𝑀𝑖𝑛𝐵                             (6) 
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where w' is updated value inside a necessary range. Min-Max normalization has benefit for annealing entire values 

within definite range. 

2) Z-Score Normalization: 

Z-score normalization, alternatively referred to as standardization, represents an essential data preprocessing method 

employed to rescale and standardize attributes through their conversion into a standardized normal distribution and 

present in the Eq. (7) 

                                                         ℎ′ =
ℎ−𝑚𝑒𝑎𝑛(𝑛)

𝑠𝑡𝑑(𝑛)
                                                               (7) 

Where 𝑀𝑒𝑎𝑛(𝑛)= sum of the all-attribute values of 𝑛  

𝑠𝑡𝑑(𝑛)=Standard deviation of all values of  𝑛 

3) Decimal Scaling normalization 

Decimal scaling normalization is a method for preprocessing data that encompasses the manipulation of feature 

values through shifting and scaling, intending to confine them within a predetermined range denoted by decimals. 

                                                                    ℎ′ =
ℎ

10𝑠                                                                (8) 

Where, “s” is the smallest integer that max (ℎ′ < 1)      

3.2.3. Null Value Handling 

A null value indicates that there is either little or no information available. Null values are independent of zero or 

empty values. Null value handling is a crucial aspect of data preprocessing in various fields, including data science 

and analytics. When dealing with datasets, null or missing values can impact analysis and model performance. 

Several strategies exist for handling null values, such as removal, imputation, or interpolation. Removal involves 

eliminating rows or columns with null values, but it may lead to data loss. The choice of strategy depends on the 

dataset's characteristics and the desired outcome, with careful consideration required to maintain data integrity and 

enhance the reliability of subsequent analyses. There exist multiple methodologies to address this quandary; 

disregarding entities that possess null values, physically bridging the gaps, replacing the absent values by the 

ongoing variable, employing mean for entities, also utilizing maximum likely value to rectify absence, however, 

such techniques are not entirely efficacious in managing Null value predicaments. 

3.3. Feature Extraction 

3.3.1. Acceleration (Acc) and Angular Velocity (Gyr): 

For Acceleration (Acc) and Angular Velocity (Gyr) data, various statistical, time-domain, and frequency-domain 

features are extracted to characterize signals. 

3.3.1.1. Statistical Measures 

• Mean - The mean is calculated by dividing the sum by the count. This is mathematically shown in Eq. (9). 

𝑀𝑒𝑎𝑛 =
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑅𝑝𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑅𝑝𝑟𝑒    (9) 

• Standard Deviation - Standard deviation (SD) measures data deviation from the mean. Low SD means values 

are close; high SD, they're spread.  This is mathematically revealed in Eq. (10). 

SD (𝜎) = √
∑(𝑅𝑝𝑟𝑒−𝜇)2

𝑁
       (10) 

Where 𝑅𝑝𝑟𝑒 is the input value (pre-processed data, 𝜇 is mean and N represents number of total elements. 

• Skewness - Skewness is statistical assess that describes asymmetry of distribution of values. It measures extent 

to which the values are shifted or tilted to one side or the other of the mean. A normal spreading has skewness 

for zero, meaning the values are symmetrical around the mean. A positive skewness implies rightward shift 
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else a long right tail, while negative skewness suggests a leftward shift or a long-left tail in the distribution. 

Skewness is used to describe the distribution of data and to identify any asymmetries in the data as shown in 

Eq. (11). 

                                             𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
3(𝑀𝑒𝑎𝑛−𝑀𝑒𝑑𝑖𝑎𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                                  (11) 

• Kurtosis - Kurtosis is statistical portion that describes shape of the allocation for the set of values. It measures 

the "peakedness" or "flatness" for the data compared to normal spreading. Kurtosis zero characterizes a normal 

distribution, positive kurtosis denotes an increased peaked distribution, negative kurtosis denotes a flatter 

distribution. Kurtosis is commonly used on financial and economic analysis to describe the distribution of 

returns from investments or financial assets. In these applications, kurtosis is used to assess the risk associated 

with the investment, as high kurtosis may indicate a higher level of tail risk, or the risk of extreme outcomes, 

such as large losses. This is mathematically shown in Eq. (12). 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (ℎ𝑖𝑔ℎ 𝑜𝑟𝑑𝑒𝑟) =
4𝑡ℎ𝑀𝑜𝑚𝑒𝑛𝑡

4𝑡ℎ𝑀𝑜𝑚𝑒𝑛𝑡2       (12) 

3.3.1.2. Time domain features 

• RMS - The Root Mean Square (RMS) is statistical measure which quantifies medium magnitude or amplitude 

for the set of values. It is particularly common in signal processing, where it provides a representative value 

for the overall magnitude of a varying signal. The RMS is calculated using Eq. (13). 

𝑋𝑟𝑚𝑠 = √
1

𝑛
𝑥𝑖

2        (13) 

• Variance - Variance measures numerical variation, indicating how data points deviate from the mean and each 

other, as in Eq. (14). 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑅𝑝𝑟𝑒−𝜇)2

𝑁
         (14) 

• Signal Magnitude Area (SMA) - is a feature extraction method calculated by summing the absolute values of 

acceleration signals along x, y, and z axes, indicating overall signal fluctuation. SMA is calculated using Eq. 

(15). 

𝑠𝑚𝑎 =
1

𝑛
∑ (|𝑥(𝑖)| + |𝑦(𝑖)| + |𝑧(𝑖)|)𝑛

𝑖=1     (15) 

SMA quantifies the fluctuation degree of the acceleration signal by summing the absolute values of acceleration 

along each axis within the specified window. A higher SMA value indicates more pronounced fluctuations in the 

signal, suggesting more dynamic or vigorous movement during that window. 

3.3.1.3. FFT 

FFT, which stands for Fast Fourier Transform, is an important mathematical algorithm used to convert an indication 

of its time domain depiction for its frequency area representation. In other words, it analyses a signal and 

decomposes it into its individual frequency components. the Fourier Transform provides frequency information 

about the image. By analysing the magnitude of FFT coefficients, heat maps can be generated to visualize the 

distribution of frequencies. High magnitudes in the heat map suggest the presence of significant periodic patterns 

or structures in the image. The main idea behind FFT is to efficiently compute the Discrete Fourier Transform (DFT) 

for signal. The DFT takes discrete indication as input and produces a complex-valued sequence as output, 

representing the amplitudes and phases of different frequencies present in the signal. The formula for the DFT of a 

signal 𝑥[𝑛], where 𝑛 is the index of the sample, is given as per Eq. (16), 

𝑋[𝑘]  =   (𝑥[𝑛]  ∗  𝑒−𝑗 ∗ 2𝜋 ∗ 𝑘 ∗ 𝑛 / 𝑁)      (16) 

Where: 𝑋[𝑘] is the complex-valued DFT coefficient at frequency 𝑘, 𝑁 is entire number for models in indication, 𝑗 

is imaginary unit, 𝑒−𝑗 ∗ 2𝜋 ∗ 𝑘 ∗ 𝑛 / 𝑁 is the complex exponential term. Frequency-Domain Features are extracted by 

applying FFT to a signal. This process transforms sign from its time-domain depiction to its frequency-domain 

portrayal, revealing various frequency components. Some key frequency-domain features include: 
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Dominant Frequency: The frequency with the highest magnitude in the FFT spectrum, indicating the primary 

oscillation in the signal. 

Spectral Entropy: A measure of the distribution of frequencies in the signal. Higher entropy suggests a more evenly 

distributed spectrum. 

Power Spectral Density (PSD): Represents power dispersal across various frequencies in the signal, offering insights 

into the signal's energy distribution. 

3.3.2. Joint Angles (Ang) and Orientation (Ori) 

3.3.2.1. Raw joint angles 

It serves as features representing the articulated positions of body joints. These angles directly capture the 

configuration of limbs and body segments. Optionally, computing angular differences between consecutive frames 

involves calculating the change in joint angles over time. This additional step provides dynamic information, 

reflecting how joints are moving between frames. Both raw joint angles and angular differences contribute to a 

comprehensive understanding of biomechanics, aiding in tasks such as human motion analysis. These features are 

valuable in applications ranging from sports biomechanics to rehabilitation, offering insights into movement 

patterns and facilitating the development of predictive models. 

3.3.2.2. Euler Angles 

Euler angles, denoted as (roll, pitch, and yaw), are a representation of positioning for an object in three-dimensional 

space. The Euler angles describe the rotation needed to transform from a mentioned organize system for object's 

manage system.  

Roll (𝜙): Rotation about the X-axis. 

Pitch (𝜃): Rotation about the Y-axis. 

Yaw (𝜓): Rotation about the Z-axis. 

The alteration matrix 𝑅 from object's coordinate system for reference organize system is given by the product of 

individual rotation matrices is given as per Eq. (17). 

𝑅 = 𝑅𝑧(𝜓) ∙ 𝑅𝑦(𝜃) ∙ 𝑅𝑥(𝜙)       (17) 

Where 𝑅𝑥(𝜙) is rotation matrix around the X-axis by angle 𝜙, 𝑅𝑦(𝜃) is rotation matrix around the Y-axis by angle 

𝜃, and 𝑅𝑧(𝜓) is rotation matrix around the Z-axis by angle 𝜓. Extracting Euler angles involves decomposing the 

given rotation matrix 𝑅 into its roll, pitch, and yaw components. This decomposition process may involve solving 

for the angles using trigonometric functions.  

3.3.3. Electromyography (EMG) 

3.3.3.1. Time-Domain Features 

Time-domain features like MAV, waveform length, and RMS quantify signal characteristics, aiding in signal 

analysis and processing. 

• MAV - MAV is a measure of average complete amplitude for the signal. It is calculated by getting the average 

for complete values of the signal samples. 

𝑀𝐴𝑉 =
1

𝑛
∑ |𝑥(𝑖)|𝑛

𝑖=1         (18) 

Where 𝑛 is number of samples in indication also 𝑥(𝑖) represents 𝑖 − 𝑡ℎ sample. 

• Waveform Length - Waveform length is the measure for cumulative length of  signal. It quantifies the overall 

extent of the signal's waveform. For a discrete signal 𝑥[𝑖], the waveform length is calculated as per Eq. (19) 

𝑤𝑙 = ∑ |𝑥(𝑖 + 1) − 𝑥(𝑖)|𝑛−1
𝑖=1       (19) 
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3.3.3.2. Frequency-Domain Features 

• Median Frequency - The median frequency measure that splits the power spectrum into two equal halves. It is 

the frequency below which half of the total power is contained. Mathematically, it can be computed by finding 

the frequency at which half of the cumulative power is reached. For a discrete power spectrum 𝑃(𝑗), the median 

frequency is determined as per Eq. (20). 

∑ 𝑝(𝑗) =
1

2
∑ 𝑝(𝑗)𝑛

𝑗=𝑚𝑓
𝑚𝑓
𝑗=1       (20) 

• Spectral Entropy - Spectral entropy is a measure of the complexity or randomness of the frequency distribution 

in a signal. It is calculated using the Shannon entropy formula. For a discrete power spectrum 𝑃(𝑚), the 

spectral entropy is given by Eq. (21) and it quantifies the information content or uncertainty associated with 

the power spectrum. The Fourier Transform is implemented to the signal to change it from the time domain to 

frequency domain, providing the power spectrum. 

𝑠𝑒 = − ∑ 𝑝(𝑚) log2 𝑝(𝑚)𝑛
𝑚=1     (21) 

3.3.4. Marker Data (Mrk) 

Coordinate features extracted from marker data provide valuable information about the spatial relationships and 

dynamics of points in a motion capture system. 

• Relative Distances: Calculate the distances between pairs of markers to capture the relative spatial positions. 

The Euclidean distance formula is commonly used, expressed as per Eq. (22). 

𝑟𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2  (22) 

• Angles: Determine the angles formed by three markers to understand joint configurations or segment 

orientations. Angle calculation can be based on trigonometric functions, dot products, or other geometric 

methods. 

• Velocities: Compute the velocities of markers to capture the speed of movement. Velocity is often obtained by 

differentiating the coordinates with respect to time. For marker 𝑖, the velocity (𝑣𝑖) can be calculated as per Eq. 

(23). 

𝑣𝑖 = √(
𝑑𝑥𝑖

𝑑𝑡
)

2

+ (
𝑑𝑦𝑖

𝑑𝑡
)

2

+ (
𝑑𝑧𝑖

𝑑𝑡
)

2

    (23) 

where 𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖  are the coordinates of marker 𝑖, and 𝑡 is time. 

3.4. Feature Fusion 

Feature fusion, the amalgamation of multiple feature vectors into a comprehensive one, typically relies on vector 

concatenation. However, direct concatenation can lead to shading issues due to varying value ranges from different 

extractors, impacting smaller values. To address this, normalization is performed before fusion, mitigating numerical 

shading concerns. Diverse dimensions and units in machine learning features necessitate data standardization for 

compatibility. Integrating attention mechanisms in the fusion process enables dynamic weighting of the importance 

of various sensor modalities at each time step. This adaptive approach permits system to focus optionally on 

pertinent details, enhancing overall performance and responsiveness of the fusion process in scenarios where certain 

modalities or features may be more critical during specific activities or phases. In this paper, Z-score normalization 

technique employed, examining feature similarities and calculated as per Eq. (24). Features are then weighted to 

optimize fusion, recognizing varied contributions from different approaches and ensuring an effective and balanced 

feature fusion strategy. 

𝑓𝑓′ =
𝑓𝑓−𝜇

𝜎
 , 𝜇 = ∑ 𝑓𝑓𝑖  ,   𝜎 = √

1

𝑛𝑓𝑓

𝑛𝑓𝑓

𝑖=1
∑ (𝑓𝑓𝑖 − 𝜇)2𝑛𝑓𝑓

𝑖=1
   (24) 

Utilizing the mean (𝜇) and standard deviation (𝜎), features are normalized. The process culminates in vector 

concatenation for fusion as represented by Eq. (25). 

𝐹𝐹 = ∪
𝑖 𝜖 {1,…,𝑁}

𝑓𝑓𝑖 = [𝑓𝑓1 ⊕ 𝑓𝑓2 ⊕ … ⊕ 𝑓𝑓𝑛]      (25) 
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Where 𝑛 represents the count of features for concatenation, denoted by ⊕. The feature set {𝑓𝑓1 ⊕ 𝑓𝑓2 ⊕ … ⊕ 𝑓𝑓𝑛} 

in Eq. [25] encompasses various combinations, incorporating deep learning, color, shape, and texture-based features. 

Features are balanced by assigning weights based on their significance, using Eq. (26). This ensures a fusion, 

harmonizing contributions from different approaches, crucial for optimizing the overall performance of the machine 

learning model. 

𝐹𝐹 = ∪
𝑖 𝜖 {1,…,𝑁}

𝑤𝑒𝑖𝑓𝑓𝑖 = [𝑤𝑒1𝑓𝑓1 ⊕ 𝑤𝑒2𝑓𝑓2 ⊕ … ⊕ 𝑤𝑒𝑛𝑓𝑓𝑛]    (26) 

where the scale value 𝑤𝑒𝑖  means the weight of feature 𝑓𝑓𝑖. 

3.5. Feature Selection 

The planned algorithm, ASSMPA, fuses MPA and PFA to enhance feature selection efficiency. It leverages the 

strengths of both algorithms for improved performance in optimization tasks. 

3.5.1. Adaptive Step Size in Marine Predators Algorithm (ASSMPA) 

The new hybrid optimization algorithm ASSMPA combines MPA and PFA for optimal feature selection. PFA is a 

nature-inspired optimization technique where a leader guides a group of particles, mimicking animal herds' 

collective behavior. It aims to find optimal solutions by combining guided and random movements within a solution 

space. MPA is nature-inspired optimization method which simulates hunting behavior of marine predators. It 

employs principles of prey pursuit, encircling prey, and cooperative hunting to solve optimization problems by 

iteratively updating candidate solutions.  

3.5.1.1. Mathematical Model 

In the proposed model, swarm members are positioned in 2D, 3D, or d-dimensional spaces. The leader, known as 

the pathfinder, is chosen based on their location in the most promising area. Swarm individuals represent candidate 

solutions for a problem and can navigate in various dimensions to search for prey, feeding areas, or follow the 

pathfinder's guidance. The PFA dynamically adjusts the step size parameter for predator movement, leading to 

improved search efficiency and optimization within the MPA. This adaptive update helps prevent local optima and 

premature convergence. The best-positioned member is chosen to serve as the leader and it is calculated as per the 

proposed Eq. (27). 

𝑝(𝑡 + ∆𝑡) = 𝑝0(𝑡) ∙ 𝑢 + 𝑥𝑖 + 𝑥𝑝𝑎𝑡ℎ + 𝜀 + 𝑃 ∙ 𝐶𝐹    (27) 

𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥−𝑖𝑡𝑒𝑟
)

(2
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥−𝑖𝑡𝑒𝑟
)

      (28) 

Where 𝑡 represents time, 𝑝 is the position vector, 𝑢 is the unit vector without any angle. 𝑥𝑖 represents pairwise 

interactions with neighbors 𝑝𝑖  and 𝑝𝑗. 𝑥𝑝𝑎𝑡ℎ denotes the global force, which depends on the global optimum or the 

position of the pathfinder. 𝜀 is a vector of vibration, 𝑃 = 0.5 denotes the constant number, 𝐶𝐹 regarded as an 

adaptive parameter for governing the step size in controlling predator movements. Eq. (29) determines how 

pathfinder's position is updated, 

𝑝𝑝𝑎𝑡ℎ(𝑡 + ∆𝑡) = 𝑝𝑝𝑎𝑡ℎ(𝑡) + ∆𝑝 + 𝐹      (29) 

Here, 𝑝𝑝𝑎𝑡ℎ denotes the pathfinder's position vector, ∆𝑝 signifies the distance it travels between points, and 𝐹 

represents the fluctuation rate vector. The collective swarm movement model mentioned earlier isn't directly 

applicable to solve optimization problems. Modifications are essential for adaptability. The primary adjustments 

involve transforming Eq. (27) and Eq. (29) into Eq. (30) and Eq. (31) in our approach. The initial modification is as 

follows: 

𝑝𝑖
𝑐+1 = 𝑝𝑖

𝑐 + 𝑅𝑎1 ∙ (𝑝𝑗
𝑐 − 𝑝𝑖

𝑐) + 𝑅𝑎2 ∙ (𝑝𝑝𝑎𝑡ℎ
𝑐 − 𝑝𝑖

𝑐) + 𝜀,    𝑖 ≥ 2  (30) 

Where 𝑐 representing the current iteration, 𝑝𝑖  and 𝑝𝑗 denoting the position vectors of the 𝑖𝑡ℎ and 𝑗𝑡ℎ members, 𝑅𝑎1 

and 𝑅𝑎2 which are random vectors. 𝑅𝑎1 is equal to 𝛼𝑅𝑎1 and 𝑅𝑎2 as 𝛽𝑅𝑎2 where 𝑟𝑎1 and 𝑟𝑎2 are uniformly 

generated random variables within the [0,1] range and introduce random movements. 𝛼 signifies the coefficient for 

interaction, determining the extent of movement influenced by neighbouring individuals. 𝛽 represents the 
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coefficient of attraction, dictating the random distance to maintain proximity to the leader. There are two significant 

scenarios: When 𝛼 and 𝛽 are close to 0, individuals move randomly without interaction, essentially behaving 

independently. When 𝛼 and 𝛽 are significantly high follower members tend to move far from the leader, hindering 

the discovery of promising solutions. Ideally, 𝛼 and 𝛽 should be around 1 for balanced movement. These values can 

be either constant or randomly selected within a specific range during iterations. Additionally, a vibration term, 

represented as 𝜀 is generated in each iteration using Eq. (30). The second modification is as follows per the proposed 

Eq. (31). 

𝑝𝑝𝑎𝑡ℎ
𝑐+1 = 𝑝𝑝𝑎𝑡ℎ

𝑐 + 2𝑟𝑎3 ∙ (𝑝𝑝𝑎𝑡ℎ
𝑐 − 𝑝𝑝𝑎𝑡ℎ

𝑐+1 ) + 𝐹 + 𝑃 ∙ 𝐶𝐹   (31) 

Thus, using Eq. (33), 𝑟𝑎3 is a random vector that is created evenly throughout the range [0,1] for each iteration. 

𝜀 = (1 −
𝑐

𝑐𝑚𝑎𝑥
) 𝑟𝑣1 ∙ 𝑑𝑖𝑗 ,        𝑑𝑖𝑗 = ‖𝑝𝑖 − 𝑝𝑗‖    (32) 

𝐹 = 𝑟𝑣2 ∙ 𝑒
−2𝑐

𝑐𝑚𝑎𝑥        (33) 

Where, 𝑝𝑖  signifies the position vector for 𝑖𝑡ℎ follower, 𝑝𝑗 denotes position vector for 𝑗𝑡ℎ follower, 𝑐 denotes the 

present iteration, 𝑐𝑚𝑎𝑥  is maximum amount of repetitions allowed. 𝛼 and 𝛽 are random values generated within the 

range [1, 2]. They also play a role in the algorithm's calculations. 𝑑𝑖𝑗  signifies the distance between the ith follower 

and the 𝑗𝑡ℎ follower, 𝑟𝑣1 and 𝑟𝑣2 are arbitrary vectors with values ranging from -1 to 1. These vectors are used as 

part of the algorithm's calculations. The termination condition of the PFA can be based on either the extreme number 

of cycles (iterations) or the maximum number for function evaluations. The algorithm stops when one of these 

conditions is met. The PFA is an algorithm that utilizes these variables and concepts to achieve its specific objectives, 

which may involve path finding or optimization tasks.  This enhances data protection by providing a robust defense 

against unauthorized access and bolstering the security of sensitive information. The steps of ASSMPA structure of 

pseudocode are presented in Algorithm 1.  

Algorithm 1: ASSMPA 

Initialize the parameters 

Initialize the population 

Find the pathfinder 

While 𝑐 < maximum number of iterations 

Adjust step size for MPA in PFA algorithm 

Calculate best positioned member given as per Eq. (27) 

Update the pathfinder position given as per Eq. (29) 

Calculate the current iteration given as per Eq. (30) 

Calculate the pathfinder position vector given as per Eq. (31) 

Calculate fluctuation rate vector and update as per Eq. (33) 

Generate 𝐹 and 𝜀   

End  

3.6. Active Prosthetics: MMHNN Powered Limb Recognition 

This study employs a MMHNN for active lower limb prosthetics activity recognition. It integrates diverse models, 

including LSTM, CNN, Attention-Based, and Dense Neural Network, showcasing a comprehensive approach to 

effectively capture and interpret complex lower limb movements. Figure 2 illustrates the conceptual design of the 

MMHNN-powered limb recognition system for analysis and understanding. 
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Figure 2: Proposed MMHNN Powered Limb Recognition 

3.6.1. MMHNN 

LSTM, a specialized RNN architecture, addresses vanishing/exploding gradient issues. It excels in processing time-

series data by managing long-term dependencies. The LSTM cell, consisting of input, update, forget, and output 

gates, selectively stores, updates, forgets, and outputs information, maintaining a balance between long-term and 

short-term memory for effective sequential data processing. The input gate, which may be mathematically expressed 

per Eq. (34), determines which data must be supplied to the cell. 

𝑖𝑡= 𝜎(𝑤𝑖 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)                           (34) 

The vectors are multiplied element by element through the operator ∗. The forget gate, that is statistically defined 

as per Eq. (35), checks the details to be disregarded from prior retention. 

𝑓𝑡 = 𝜎(𝑤𝑓 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)                         (35) 

The update gate, denoted hypothetically as per Eq. (36) and Eq. (37), adjusts cell state. 

𝑐�̃�= tan ℎ (𝑤𝐶 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐)                  (36) 

𝑐𝑡=𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗  𝑐�̃�                                    (37) 

The output gate, which is also able to update output as it provided through prior time step, updates the hidden layer 

of that previous step in time as per Eq. (38) and Eq. (39). 

𝑂𝑡= 𝜎(𝑤𝑜 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)                         (38) 

ℎ𝑡 = 𝑂𝑡 ∗ tan ℎ(𝐶𝑡)                                      (39) 

The proposed model introduces Dilated Convolutional Neural Networks (CNN) with incremental dilations, 

enhancing feature extraction through the introduction of zeros between filter elements. Dilation, controlled by the 

hyper-parameter dilation rate, expands the receptive field of filters, allowing the network to capture more relevant 

information. Unlike traditional CNNs with large filters like 5×5, the model uses dilations in 3×3 convolution layers, 

avoiding additional computational overhead. The Dilated CNN architecture consists of three convolution layers 

with varying dilation rates, followed by Maxpooling layers and dense layers with ReLU activation. The model is 

designed for binary classification using the Sigmoid activation function. The incremental dilation approach aims to 
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analyze the impact on model performance, emphasizing simplicity to understand the gridding effect induced by 

dilation.  

• Convolutional layer  

The typical neural network's matrix multiplication process is replaced with the convolution operation in the 

convolutional layer, that is utilized to extract picture information as well as learn the mapping among the input and 

output layers. The network may learn only one collection of parameters through exchanging parameters through the 

convolution process, significantly lowering the total number of variables and significantly increasing computing 

efficiency. A convolution process is defined as in Eq. (40) 

𝑓𝑗,𝑔 = ∑ ∑ 𝑘𝑖,𝑙 𝑚𝑗+𝑖,𝑔+𝑙
ℎ
𝑙=0

ℎ
𝑖=𝑜    (40) 

where 𝑘𝑖,𝑙 is weight for convolutional kernel at 𝑚𝑎𝑛𝑑𝑙; 𝑚𝑗+𝑖,   is the pixel value for image at 𝑖 and 𝑔; h is height 

and width of convolutional kernel. 

• Activation Function  

To evade threatened gradients and hasten training, CNN naturally usages Rectified Linear Unit (ReLU) activation 

functions. Eq. (41) describes ReLU's goal. 

ReLU(𝑛) = {
𝑓 𝑓 > 0
0 𝑓 ≤ 0

    (41) 

• Pooling Layer 

The pooling layer groups the input across feature maps and helps lower the computational complexity of the entire 

network. One typical pooling layer is maximum pooling shown in Eq. (42): 

𝑀𝑥𝑃𝑙(𝑜𝑜𝑡 , 𝑘𝑜𝑡) = {
𝑜𝑜𝑡 = 𝑓𝑙𝑜𝑜𝑟 (

(𝑜𝑔+2𝑞−𝑝)

ℎ
+ 1)

𝑘𝑜𝑡 = 𝑓𝑙𝑜𝑜𝑟 (
(𝑒𝑔+2𝑞−𝑝)

ℎ
+ 1)

     (42) 

where 𝑓𝑙𝑜𝑜𝑟(𝑚) is function for round up number, 𝑜𝑜𝑡  is yield height for feature map, 𝑘𝑜𝑡 is output width for feature 

map, 𝑜𝑜𝑡  is input height for feature maps, 𝑘𝑔 is input size of feature maps, 𝑞 is padding for feature maps, 𝑝 is kernel 

size for max pooling, ℎ is the kernel stride for max pooling. 

• Fully Connected Layer 

A type of neural network layer known as fully connected layers, often referred to as A dense layer is one where all 

of the neurons are coupled to all of the neurons in each layer that are above and below it. There is a learnable weight 

assigned to each link between neurons that is changed throughout training to enhance the performance of the 

network. Fully connected layers are utilized to recognize non-linear patterns then correlations in input data. These 

layers are capable of capturing detailed feature interactions. The outputs of a layer that is fully linked and has M 

input neurons and N output neurons can be calculated as follows: 

The output value 𝑜𝑗  is calculated for each output neuron 𝑗(1 ≤ 𝑗 ≤ 𝑁) by adding the weighted inputs from all input 

neurons 𝑖(1 ≤ 𝑖 ≤ 𝑀) and using an activation function, 

𝑜𝑗 = 𝑓(𝑠𝑗) = 𝑓(∑(𝑤𝑖𝑗 ∗ 𝑥𝑖) + 𝑏𝑗)      (43) 

In Eq. (43), 𝑜𝑗 is output of 𝑗𝑡ℎ neuron, 𝑓() is instigation function used element-wise to weighted sum for inputs, 𝑠𝑗 

is weighted sum of inputs to 𝑗𝑡ℎ neuron, 𝑤𝑖𝑗 is weight associated with connection between 𝑖𝑡ℎ input neuron and 𝑗𝑡ℎ 

output neuron, 𝑥𝑖  is input value of 𝑖𝑡ℎ neuron, 𝑏𝑗 is bias term for 𝑗𝑡ℎ neuron. 

The proposed model integrates LSTM for time-series data processing and Dilated Convolutional Neural Networks 

(CNN) for effective feature extraction. The LSTM cell manages long-term dependencies with input, update, forget, 

and output gates, ensuring a balance between memory types. Dilated CNNs use incremental dilations to enhance 

feature extraction by expanding the receptive field. The convolutional layer replaces matrix multiplication, pooling 

reduces computational complexity, and fully connected layers capture detailed feature interactions. ReLU activation 
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avoids vanishing gradients. The attention mechanism dynamically weighs LSTM and Dilated CNN information, 

ensuring adaptive fusion based on attention weights for comprehensive feature utilization. 

A Dense Neural Network (DNN), or Fully-connected Neural Network, is a foundational architecture in artificial 

neural networks. It comprises layers of nodes where every node is intricately linked to all nodes on preceding and 

succeeding layers. The term dense stems from the comprehensive interconnections, creating a web of relationships 

within the network. The initial layer is the input layer, through which data is introduced. Hidden layers, situated 

between input and output layers, derive their name from the typically inaccessible and abstract nature of their logical 

representations. The output layer produces the final result.  

IV. RESULT AND DISCUSSION 

4.1. Experimental Setup 

The implementation of proposed model utilized PYTHON, while Dataset [26] provided the information for 

evaluation. This section matches effectiveness for proposed procedure against established methods such as CNN, 

Recurrent Neural Network (RNN), SVM, and Gated Recurrent Unit (GRU). The evaluation aims to highlight the 

effectiveness and superiority of the proposed activity recognition of lower limb prosthetics methodology over 

established methods. 

4.3. Overall Performance Analysis of Metrics in Proposed and Existing Methods  

 Accuracy: 

To determine a test's accuracy, the results from all the cases are examined and the percentage of true positives and 

negatives are determined. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑝+𝐹𝑃+𝑇𝑁+𝐹𝑁
                           (44) 

 Precision: 

Precision is referred to the proportion of true positives that were successfully classified. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (45) 

 Recall: 

Recall shows the number of right hits and true positives that were recalled or identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (46) 

 F_Score 

The F-Score number achieves a compromise between accurately identifying every data bit and making sure 

that every stage only contains single kind of data item. 

𝐹_𝑆𝑐𝑜𝑟𝑒 =
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                    (47) 

 Specificity 

Specificity is referring to the likelihood that a student will pass, assuming that it is affirmative. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (48) 

 FDR 

FDR is the “False Discovery Rate”. It is statistical portion which quantifies ratio for falsely identified positive data 

points to the overall count of positively identified data points  

𝐹𝐷𝑅 =  (
𝐹𝑝

(𝐹𝑝+𝑇𝑝)
)     (49) 
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 FNR 

FNR denotes the “False-Negative Rate”. It can be described the percent of misclassified instances which falsely 

labelled as negative, comparative to total number of positive instances.  

𝐹𝑁𝑅 =  (
𝐹𝑛

(𝐹𝑛+𝑇𝑝)
)      (50) 

 FPR 

 FPR denotes the “False-Positive Rate”. It can be clear as proportion for incorrectly classified positive data to total 

number of negative data.  

𝐹𝑃𝑅 =  (
𝐹𝑝

(𝐹𝑝+𝑇𝑛)
)     (51) 

 MCC 

MCC refers to “Matthew's Correlation Coefficient”. It is a statistical measure used to assess the quality of binary 

classification models. It is computed based on four values 𝑇𝑝, 𝑇𝑛, 𝐹𝑝, and 𝐹𝑛.  

𝑀𝐶𝐶 =  (
((𝑇𝑝 ×𝑇𝑛)−(𝐹𝑝 ×𝐹𝑛))

√((𝑇𝑝+𝐹𝑝)(𝑇𝑝+𝐹𝑛)(𝑇𝑛+𝐹𝑝)(𝑇𝑛+𝐹𝑛))
)   (52) 

 NPV 

NPV refers to the “negative predictive value”. It can be described as the probability of accurately classifying genuine 

non-hit variants as non-hits, given a specific threshold. 

𝑁𝑃𝑉 =  (
𝑇𝑛

(𝑇𝑛+𝐹𝑛)
)     (53) 

The table 1 grants the recital metrics for four separate patterns MMHNN, CNN, Bi-LSTM, and DNN—on a 

classification job. The MMHNN model exhibits an impressive level of accuracy, with a score of 98.59%. It also 

displays a high level of precision, with a score of 98.90%, and a recall score of 98.74%. Additionally, the model 

achieves a balanced performance, as indicated by its F-score of 98.40%. CNN achieves a high accuracy of 94.00%, 

demonstrating precise measurements of precision, recall, and F-score at 92.11%, 92.31%, and 92.77% 

correspondingly. Both Bi-LSTM and DNN demonstrate comparable accuracies, with Bi-LSTM achieving 95.24% 

accuracy and DNN achieving 95.78% accuracy. The Bi-LSTM model achieves accuracy, recall, and F-score values 

of 92.11%, 92.94%, and 92.86% respectively, whereas the DNN model exhibits values of 93.02%, 93.02%, and 

94.23% respectively. In addition, measurements like as specificity, sensitivity, MCC, NPV, FPR, and FNR offer a 

thorough assessment of the subtle variations in performance for each model. Stakeholders may utilize this 

comprehensive analysis to make well-informed decisions based on the precise needs and trade-offs associated with 

the categorization process. 

Table 1: Comparison analysis of the performed metrics of Training dataset 70/30 

Model MMHNN CNN Bi-LsTM DNN 

Accuracy 0.98592 0.94 0.95238 0.95775 

Precision 0.98901 0.92105 0.92105 0.93023 

Recall 0.98739 0.92308 0.92941 0.93023 

F-Score 0.98404 0.92771 0.92857 0.94231 

Specificity 0.9879 0.93478 0.93478 0.94231 

Sensitivity 0.98684 0.92105 0.92683 0.92683 

MCC 0.9879 0.9434 0.94118 0.94915 

NPV 0.98846 0.94231 0.95082 0.95 

FPR 0.03641 0.0741 0.0641 0.0811 

FNR 0.04654 0.06523 0.0523 0.0913 
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Table 2 explains for the classification test, performance metrics for four models—MMHNN, CNN, Bi-LSTM, and 

DNN—were examined using an 80/20 training dataset split. MMHNN demonstrated a remarkable overall accuracy 

of 99.07%, along with excellent precision (99.01%), recall (98.86%), and F-score (98.49%) values, indicating a 

strong and well-rounded performance. The CNN model attained an accuracy of 95.00%, by  precision score of 

93.75% and recall score of 93.18%, resulting in a competitive F-score of 92.94%. The Bi-LSTM model 

demonstrated strong performance, achieving an accuracy of 95.89%. It also showed high precision, recall, and F-

score values of 92.11%, 93.81%, and 94.23% respectively. The DNN achieved a superior accuracy of 96.30%, 

demonstrating high precision (93.62%) and recall (93.18%), resulting in an exceptional F-score of 94.34%. The 

models exhibited different degrees of specificity, sensitivity, MCC, NPV, FPR, and FNR, offering a detailed 

comprehension of their respective advantages and limitations. Stakeholders may utilize these extensive indicators 

to make well-informed judgments depending on the precise needs of the categorization assignment. 

Table 2: Comparison analysis of the performed metrics of Training dataset 80/20 

Model MMHNN CNN Bi-LsTM DNN 

Accuracy 0.99071 0.95 0.9589 0.96296 

Precision 0.9901 0.9375 0.92105 0.93617 

Recall 0.98859 0.93182 0.93814 0.93182 

F-Score 0.98485 0.92941 0.94231 0.9434 

Specificity 0.988 0.93617 0.94643 0.94444 

Sensitivity 0.98701 0.92683 0.92683 0.93478 

MCC 0.98805 0.94915 0.95238 0.95082 

NPV 0.98855 0.94915 0.95082 0.95161 

FPR 0.03341 0.0641 0.0601 0.0711 

FNR 0.03954 0.05523 0.0503 0.0813 

 

Figure 3: Testing and Validation for the Accuracy and Loss of Epoch  

 

Figure 4: Testing and Validation for the Accuracy and Loss of Epoch  
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Figure 3 and 4 demonstrates the testing and validation’s loss and accuracy for Epoch respectively. 

 

Figure 5: True class and Lower limb Prosthetics for normal and abnormal 

 

Figure 6: True class and Lower limb Prosthetics for normal and abnormal 

Figure 5 and 6 explains the True class and Lower limb Prosthetics for normal and abnormal conditions 

respectively. 

 

Figure 7: Graphical depiction for Accuracy comparison 
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Figure 8: Graphical illustration for Precision comparison 

 

Figure 9: Graphical representation for Recall comparison 

 

Figure 10: Graphical representation for F-score comparison 
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Figure 11: Graphical illustration for Specificity comparison 

  

Figure 12: Graphical depiction for Sensitivity comparison 

  

Figure 13: Graphical illustration for MCC comparison 
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Figure 14: Graphical representation of NPV comparison 

 

Figure 15: Graphical representation of FPR comparison 

 

Figure 16: Graphical representation of FNR comparison 
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Figure 7 to 16 shows the comparative analysis of training dataset 70/30 and training dataset 80/20 respectively. The 

accomplishment metrics such as Accuracy, Precision, Recall, F-Score, Specificity, Sensitivity, MCC, NPV, FPR, 

and FNR were used for the comparison. 

V. CONCLUSION 

Integrating prosthetic devices with users’ motions was made possible via activity recognition, which was crucial in 

improving their functionality. Nevertheless, the intricacy resulted from a variety of data sources, such as marker 

data, angular velocity, joint angles, acceleration, and orientation; therefore, a strong strategy was required to address 

information integration difficulties. Utilising various sensor modalities, each with distinct properties and possible 

sources of noise, effectively posed the main issue. Using sophisticated sensor fusion methods, like Kalman filtering, 

during data gathering, was how the suggested solution dealt with issue. While noise reduction methods like low-

pass filters helped to lessen signal distortions, synchronisation and resampling made sure that data was consistent 

throughout time.  The hybrid optimization-based feature selection technique known as ASSMPA, which focuses on 

marker data features, was established in order to further improve the procedure. In order to choose the best features 

for marine predator pathfinding tasks, ASSMPA combined MPA and PFA. In order to dynamically assess the 

importance of various sensor modalities throughout the fusion process, the feature fusion step integrated attention 

mechanisms. MMHNN performed better overall as a result of this strategic fusion. Python was used in the proposed 

model's implementation. 
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