
J. Electrical Systems 20-2s (2024): 107-119

107

1Shweta

1P. K. Singh

Firefly Optimization-Based Buffer

Replacement Algorithm to Improve Nand

Flash Memory Performance

Abstract: - Because of its shock tolerance, nonvolatility, low power consumption, and fast I/O speed, flash memory is often used for storage

in consumer applications and, more recently, in the business computer environment. State drives SSDs to have not-in-place updates and

asymmetric I/O latency, with write/erase operations being substantially slower than read operations. In this paper, we propose a buffer

replacement technique FBRA that uses the firefly algorithm (FA) to precisely predict whether the pages residing in the buffer is hot or cold.

The firefly optimization estimates hot fitness value of each page in the buffer in order to accurately classify them as hot or cold by

characterizing precisely the temporal and spatial locality. To increase the hit ratio and SSD buffer use, the frequently used pages should

stay longer in buffer compared to other pages. The proposed approach outperforms the existing SSD buffer management strategies regarding

buffer hit ratio, write count, and runtime. Trace-driven simulation is done using FlashDB Simulator to support the performance of our

approach surpasses various traditional buffer replacement policies.

Keywords: Flash Memory, Firefly Algorithm, Buffer Replacement, Write count, Hit Ratio.

I.INTRODUCTION

NAND flash memory is used in PMPs and PDAs as additional storage (personal digital assistants). NAND flash

memory's great density, stress resilience, low power consumption, and fast access time make it appealing [1].

Academic and industrial researchers are increasingly considering flash memory as a next-generation storage

medium. Due to technology improvements, the cost per gigabyte of flash memory has dropped by 50% annually,

and its capacity is expanding just as quickly. Flash memory is helpful for enterprise-scale server storage. Because

of its small size, lightweight, resistance to shock, and low power consumption, NAND flash memory is commonly

employed in embedded systems[2][3]. Due to capacity and lower price, flash-memory-based SSDs are replacing

magnetic drives in corporate computing. NAND flash memory is a write-once, bulk-erase media structured in

blocks with a set number of pages[4]. NAND flash I/O operations vary from the magnetic disc. NAND flash

memory has three fundamental operations: read, write, and erase[5]. Read and write are page-based, whereas erase

is block-based. The three operations have varying latencies.

Buffer replacement may streamline the I/O sequence and minimize disc access, increasing overall

storage system performance. The LRU[6][7] policy evaluates the location of references. For buffer

replacement, most storage systems employ LRU or extended LRU algorithms[8]. The read and write

performance of flash memory I/O is asymmetric. As a result, the implementation of buffer replacement

algorithms in consumer electronics using NAND storage should be reviewed. These algorithms should look

at the hit ratio and how to reduce write counts while significantly increasing read counts.

However, several limitations still limit SSD performance. The first is its "erase-before-write" operating

technique. An SSD unit often has several blocks, each storing many pages. Page is the unit of write and read,

whereas block is the unit of erase. Rewriting a single page requires erasing the whole block comprising it.

Because block erasing takes time, it reduces SSD performance. The second problem is SSD endurance.

SSD program/erase cycles are restricted to about 1,000,000, depending on NAND flash type. A block's

use is limited. The concerns have been addressed extensively. FTL[9][10] stands for Flash Translation

Layer, and it is a software layer . The FTL maps logical block addresses (LBA) to physical block

addresses (PBA) to manage blocks in flash memory. A DRAM buffer cache may also hold the data and

mapping table. Using a buffer has several benefits. If the buffer is filled, the victim pages are flashed. There

are many SSD buffer management systems. Least recently used (LRU) is the most often utilized technique

1Computer Science and Engineering Department, Madan Mohan Malaviya University Of Technology, Gorakhpur, 273010, Uttar

Pradesh, India.

*Corresponding author(s). E-mail(s): Shweta20989@gmail.com; Contributing authors: topk.singh@gmail.com;

Copyright © JES 2024 on-line : journal.esrgroups.org

mailto:topk.singh@gmail.com

J. Electrical Systems 20-2s (2024): 107-119

108

due to its simplicity and decent performance. However, picking victims solely based on residence duration

does not always provide the greatest results. Clean first least recently used (CFLRU) is an LRU upgrade

that keeps updated pages in a buffer to decrease write operations on SSD storage.

The following are the major contribution of paper

1. We proposes FBRA which is designed to improve the overall performance of memory. The proposed

approach uses firefly algorithm to evaluate the fitness value of pages in buffer to enhance system

performance efficiency.

2.We use three types of OLTP traces to compare FBRA with LRU, CFLRU, CCFLRU, LRU-WSR, and PTLRU.

3. We evaluate the various algorithms' hit rate and the number of write operations for every trace. Our experimental

findings demonstrate that our approach outperforms others as far as overall performance is concerned.

In Section 2, we briefly describe the existing literature on buffer management. The proposed buffer management

strategy for flash memory is presented in Section 3; section 4 shows the performance evaluation. Section 5 draws

the paper to a conclusion.

II.RELATED WORK

NOR flash and NAND flash are two types of flash memory. The bus interface design differentiates these two

kinds. Moreover, NOR memory erase blocks vary from 64 to 128 Kbytes in size, and NAND flash erase

blocks vary from 8 to 32 Kbytes. The NOR memory is suitable for code preservation and execute-in-place

applications, but the NAND flash is suitable for data storage due to its high density.

Flash memory has asymmetric read, write, and erase latencies. Table I[11]analyses the differentiating

features in terms of access time and energy usage (Unlike NOR memory, NAND flash spends more time

reading and less time writing, resulting in faster erasing. As indicated in Table I, the overhead of a write

operation is approximately 200 times that of a read operation in NOR memory and around 10 times in

NAND flash.

Table 1. Access Time of NAND and NOR.

Three kinds of operations are available on NAND flash memory. Read and write operations that is performed

on the page level and erase operation that takes place in block. Whenever NAND flash memory runs low on

free space, the dirty block is erased to make space for the valid pages. Therefore, the granularity for the read

and write operation is page, and block for erase operation.

NAND flash memory, Linux, and the flash translation layer (FTL) comprise our NAND flash memory storage

system architecture. FTL act like interface between the standard file system and NAND flash memory storage

devices. As seen in fig 1 the architecture of flash memory which depicts the functionalities of FTL [14–16], which

offers address translation and garbage collector, hides NAND flash memory's fundamental properties and emulates

it as a block device.

J. Electrical Systems 20-2s (2024): 107-119

109

Figure 1 Architecture of flash memory.

I.1 Buffer Replacement Algorithm

Several researchers designed classic buffer replacement techniques to improve the hit ratio and hence I/O

speed. Due to the fact that page references reflect temporal locality, many of these works concentrate on their

frequency or recency. Algorithms in this category regard write and read costs equally.

Clean first LRU termed as CFLRU[12] was the first algorithm designed for flash memory, for flash

memory. CFLRU keeps a page list in LRU order and splits it into two regions: working and clean-first.

Pages inside the working area have recently been referred and will likely be cited again soon. Pages in the

clean- first area have not been mentioned in a long time and are good candidates as victim pages.

Figure 2 Working of CFLRU

As shown in fig 2. pages are accessed in following order F,E,D,C,B and A and window size (w) is 3.Even

though the least recently page accessed is F but CFLRU selects clean page E as victim. However, it has

certain flaws. As a consequence of cold page cache pollution, CFLRU does not properly analyze the access

frequency of buffered pages. Second, finding an acceptable window size for diverse workloads and buffer

sizes is not straightforward.

To decrease write requests to flash memory, Jung et al. devised the LRU- WSR buffer replacement

technique[13]. Cold detection technique in LRU- WSR is designed to identify cold dirty pages. Each buffer

page has a cold flag added. A dirty page that was selected as a target has the cold flag activated. If it

isn't set, the page is relocated to the buffer's MRU position, and then a new page is chosen from the

LRU. If activated, the page is saved to flash memory as the victim. Whether a page seems clean or not, it

will be victimized. On visit, the buffer list dirty page is transferred to the MRU place and its cold tag

J. Electrical Systems 20-2s (2024): 107-119

110

is deleted. As shown in fig 3.there is a flag bit attached to each page and the victim is selected for eviction

based on the flag.

Figure. 3.Working of LRU-WSR

Li et al introduced a novel page replacement technique dubbed CCF- LRU[14]. CCF-LRU maintains

both the mixed and cold clean LRU page lists. Cold clean pages are the only ones on the mixed LRU

page list. CCF-LRU first scans the cold clean LRU page list, then evicts the pages in LRU order. Then it

scans the mixed LRU page list, identifying the most frequently referred page. It will activate the cold flag

and shift the page to MRU inside the mixed list. Assuming it's a cold clean page, it'll be put towards the

cold-clean list. A cold dirty page will be chosen as the victim.

 PT-LRU [15]manages the buffer using three LRU lists: cold clean, cold dirty, and mixed. After the

first access, the page is moved to a cold clean list and a mixed LRU list. When no new access page is

available, the policy preferably tried to evict the LRU page of cold clean list. Cold dirty pages will be

evicted if list is empty. When picking a victim from a mixed list, hot clean pages are evacuated first,

followed by hot dirty pages.

III.FIREFLY OPTIMIZATION BUFFER REPLACEMENT ALGORITHM (FBRA)

A. Structure: The proposed approach adopts the firefly algorithm to calculate the prominence of buffer

pages, which will help to categorize them into cold or hot pages. The frequently used pages are known as hot;

otherwise, they are cold. Our buffer management algorithm tries to stay hot pages in buffer to increase the buffer

hit ratio. The structure of our proposed approach consists of three lists i.e., working, reserved, and victim.

Working lists are used for indexing and have as many items as buffers. It keeps all requested pages without

affecting their referred order. Once the buffer is filled, new requests must be processed. The selected victim page

is removed from the buffer to victim list and then it is deleted from working list.

The reserved list keeps in the buffer pages of working list with a high HF value. Reserved list works like LRU.

The victim list maintains the pages who have low HF in working pages. The size of victim list and reserved list is

half the buffer size respectively. The victim list is a typical LRU list, where the pages having low frequency is

flushed. When victim list page access frequency is higher than reserved list, then the pages in victim list are hotter.

Firefly algorithm calculates PH fitness for each working list page. Pages with higher PH fitness are reserved, while

others are chosen as victim. This study uses the FBRA method to categorize hot and cold logical buffer pages. The

suggested technique stores projected hot pages in the buffer to increase hit ratio and buffer use.

Working List (WL) : the working list consists of an equal number of entries as in a buffer of size N . This list

contains N frequently referenced of pages ordered according to the access. When there is no space in the buffer,

the space is made for further requests by evicting the victim pages. The victim is chosen from the victim list,

deleted from there, and from the working list. For example in fig there are six entries (N=6)where each entry

consists of three tuple such as PN: Page Number, AF: access frequency and HFv: Hot fitness value. The most

frequently used page is P4 whose HFv is 18.5.

Reserved List (RL): The reserved list contains pages with the half-highest HFv on the working-list .

Victim List (VL): The victim-list stores the working-half-lowest list's HF values' logical pages.

The structure of proposed approach has been depicted in fig 4.

J. Electrical Systems 20-2s (2024): 107-119

111

Figure 4.Structure of Proposed Approach

The pages in the victim list are hotter than those in the reserved list when the access frequency of the victim list

exceeds that of the reserved list. The new HFV value of each page in the working-list is then calculated using the

Firefly algorithm. After then, as per changes reserved-list and victim-list are updated.

B. Hot Fitness value (HFV): The primary goal of the proposed approach is enhancing the buffer

management policies by maximizing the number of buffer hit ratio, which is done with the help of HFV of pages

with firefly algorithm.

Suppose there are N buffer pages, the HFV of page is based on AF of page having a maximum frequency, its own

AF, and the distance from the page with the maximum frequency in the buffer to it. This is how spatial and

temporal locality is perceived. For instance, in Figure 5, the ith element in the working list is indicated as WLi. In

WLp, page number 6 is identified as having AF=10. The pages maintained in the working list are in access order

sequence; hence the adjacent pages will likely be associated with the request. In fig WLp is the most frequently

referenced page.Pages close to it will be accessible with WLp since working list pages are kept in the order of

access.The probability of WLi access (i≠p) is find with the help of distance from WLp.

For example, in fig.5. WL(p-1) is closer to WLp than WL2 therefore WL(p-1) has better chance than WL2 to be accessed

in future together with WLp.

Figure.5. Demonstration of Working List.

Growth rate of AF of page in working list also affected by its own AF. In other words, a page will likely be viewed

again in the near future if it is now being accessed often, which is referred to as temporal locality. For example if

temporal locality is taken into consideration, since AF of WL2 is greater than WL(p-1), the probability of WL2 is

higher than WL(p-1) to be accessed in future.

C. Firefly Algorithm (FA): Winged beetles or insects called fireflies emit light and flicker during the night.

The term "bioluminescence" refers to a chemically produced light that emanates from the lower abdomen but is

J. Electrical Systems 20-2s (2024): 107-119

112

neither infrared nor ultraviolet in frequency. To attract possible mates or prey, they especially use the flashlight.

Additionally, the flashing light serves as an indicator system to alert the firefly to potential predators.The Firefly

Algorithm (FA), a metaheuristic algorithm inspired by the bioluminescent communication phenomenon and the

flashing feature of fireflies, was created by Yang [16].The Firefly Algorithm was developed under the following

presumptions:

1. A firefly is unisexual

2. The more sparkling firefly will gravitate towards the less sparkling firefly since attractiveness is inversely

correlated with brightness. But the attraction is diminished when the distance between the two fireflies grew.

3. When both fireflies are bright, they will travel randomly. New solutions are generated by random walk

and firefly attraction [17][18]. The brightness of the firefly should be connected to the problem's relevant goal

function. They can divide into smaller groups due to their allure, and each group converges around the local

models. According to [19][20], Firefly Algorithm is appropriate for optimization situations.

Based on the findings of earlier research, many researchers have indicated that FA, invented by Yang in 2008, is

a highly strong approach to handle limited optimization issues and NP-hard problems. FA [21] has been used

extensively to solve continuous mathematical functions. The algorithm must only use basic arithmetic and

reasoning in applied mathematics. Since FA's behavior is straightforward, it may be used to solve continuous

mathematical functions.

FA is efficient and outperforms traditional techniques based on ordinary stochastic test functions. The program

relies on the firefly's worldwide communication to function. It may, therefore, concurrently discover both the

global and local optimum. FA primarily employs genuine random numbers. Fireflies operate independently of one

another, making parallel implementation possible. FA is one of the methods lately utilized by academics to find

solutions to optimization issues in dynamic environments.

Using the firefly algorithm generally involves the following steps:

1. Initialize the parameters of the firefly algorithm, the population of fireflies, and the number of iterations.

2. Examine each firefly's fitness function.

3. Use the initial fitness value to determine the early light intensity level.

4. Use the equation of movement to update each firefly's movement.

5. To get the optimal firefly value, compare each top firefly candidate to the fitness function's value.

6. Perform iterations up to their maximum or until a firefly with a satisfactory fitness function exists.

The attractiveness of the firefly is

𝐸𝑖 = 𝐸𝑚𝑎𝑥𝑒−𝑇𝑓𝑖 (1)

Where, 𝐸𝑖 is expected access frequency, 𝐸𝑚𝑎𝑥 is maximum access frequency, T is the Temporal locality factor and

𝑓𝑖 is access frequency of 𝐷𝑖 .

Ψ = Ψ𝑜𝑒−𝑇𝑓𝑖 (2)

Where, Ψ is personal learning and Ψ𝑜 is weight of personal learning when 𝑓𝑖 = 0

𝑅𝑖
𝑡+1 = 𝑅𝑖

𝑡 + Ψ(𝐸𝑖 − 𝑓𝑖) + Φ
1

|𝐻 − 𝑖|
 (3)

Where Φ is social learning, H is position of page of largest frequency and 𝑅𝑖
𝑡+1 is location of fireflies i.

The HFV value is calculated using equation

 𝐻𝐹𝑣𝑖 = 𝐻𝐹𝑖 + 𝑅𝑖
𝑡+1 (4)

In our proposed approach, the following algorithms 1 and 2 are for buffer write and the victim selection procedure.

J. Electrical Systems 20-2s (2024): 107-119

113

Algorithm 1 Write management in buffer

Initialization-

LP : Logical Page, P: Page, BSSD :SSD_Buffer, RLP :Requested Logic Page

RL : Reserved List, WF : Write Frequency, TOP: Header, VL :Victim List

FSSD : SSD_Flash, VP :Victim Page, WL :Working List

If(LP ∈ BSSD)

 Search RLP in WL

 If (LP ∈ PL)

 {

 𝑀𝑆𝑒𝑙𝑒𝑐𝑡𝑝 ();

 WF++;

 Keep LP on the TOP of PL;

 }

 Else(LP ∈ VL)

 {

 𝑀𝑆𝑒𝑙𝑒𝑐𝑡𝑝 ();

 WF++;

 Keep LP on the TOP of PL;

 }

Else(LP ∉ BSSD)

 If (LP ∈ FSSD)

 {

 VP = 𝑀𝑆𝑒𝑙𝑒𝑐𝑡 𝑉𝑝 ();

 Flush VP→ FSSD;

 Load LP from FSSD;

 Keep LP on the TOP of VL ;

 }

 Else(LP ∉ FSSD)

 {

 If (WL! = FULL)

 {

 If (RL! = FULL)

 Keep LP on the TOP of RL ;

 Else (VL! = FULL)

 Keep LP on the TOP of VL ;

 }

 Else (WL == FULL)

 {

 VP = 𝑀𝑆𝑒𝑙𝑒𝑐𝑡 𝑉𝑝 ();

 Flush VP → FSSD ;

 Keep LP on the TOP of VL ;

 }

}

Algorithm 2 Victim selection algorithm

Initialization-

LP : Logical Page, N: Buffer Size, ϒ= Predicted Hot Fitness value, fc : frequency count

S_RL : Sum of fc of pages in RL, S_VL : Sum of fc of pages in VL

VP: Victim Page.

If (S_RL >S_VL)

J. Electrical Systems 20-2s (2024): 107-119

114

 {

 Goto tail of VL;

 𝑀𝑆𝑒𝑙𝑒𝑐𝑡 𝑉𝑝 ();

 }

Else

 {

 Perform FFA in WL ;

 Maintain 2/L LP with large ϒ value in the RL ;

 Maintain remaining 2/L LP in the VL ;

 Goto tail of VL;

 𝑀𝑆𝑒𝑙𝑒𝑐𝑡 𝑉𝑝 ();

 }

IV.PERFORMANCE EVALUATION:

The experiments in this section compare FBRA against various policies, such as LRU, CCFLRU,

CFLRU, LRU-WSR, and PTLRU, regarding write count and buffer hit ratio. Performance metrics are

obtained by executing synthetic traces along with real workloads collected from corporate systems. Three

types of traces are utilized to compare buffer management techniques. The Storage Performance Council

made them accessible from an OLTP storage institution (SPC)[22][23].

Flash-DBSim[24], a configurable simulation environment, is used to conduct the simulation tests. For

investigating flash-based buffer replacement techniques, Flash- DBSim is employed since it is reusable,

adjustable, and versatile. A block can only be erased 100,000 times.

An "x%/y%" locality shows that x% of all references are conducted actively in y% of all pages. Table 2.

shows that x percent of all references are extensively completed in y percent of all pages.

Table 2. Three types of OLTP Traces

Traces No. of Request R/W Ratio Locality

T1 3,000,000 30%/70% 70%/30%

T2 3,000,000 50%/50% 50%/50%

T3 3,000,000 10%/90% 80%/20%

.

Figure. 6 Hit Ratio for trace T1

J. Electrical Systems 20-2s (2024): 107-119

115

Figure. 7 Hit Ratio for trace T2.

Figure. 8 Hit Ratio for trace T3.

A comparison of buffer replacement techniques is shown in Fig 6,7 and 8. In most circumstances, FBRA

outperforms other strategies in terms of hit ratio. As FBRA considers both spatial and temporal locality, it

efficiently evict pages that are not expected to be accessed subsequently as well as pages with low frequency and

situated near page with the highest frequency. The suggested system considers temporal and spatial

localization of pages, which increases the hit ratio. The nature of the workloads has a significant amount of

control over the buffer hit ratio.

Figure. 9 Write count for trace T1

J. Electrical Systems 20-2s (2024): 107-119

116

Figure. 10 Write count for trace T2.

Figure. 11 Write count for trace T3.

Fig 9,10 and 11 shows the experimental results of FBRA and other existing buffer replacement algorithms

in context of number of write operation performed. The write count is calculated using number of writes

occurred during page replacement. To extend the life of SSD number of write operations must be decreased.

The suggested approach consistently decreases the write count by taking into account the HFv of the page.

Figure. 12 Runtime for trace T1.

J. Electrical Systems 20-2s (2024): 107-119

117

Figure. 13 Runtime for trace T2.

Figure. 14 Runtime for trace T3.

Figure 12,13 and 14 displays algorithm runtimes of five buffer replacement policies for various buffer sizes in

which FBRA has minimal runtime. The graph above shows that FBRA takes less time than others existing

approaches because of lower write count. Due to the asymmetric I/O latencies, the variations in the number of

write operations to flash memory are not especially significant. As a result, lowering the number of write operation

is the main goal of the buffer replacement techniques.

Table 3. shows the comparative analysis of FBRA and other existing approaches by comparing the median of hit

ratio and write count. For given traces our approach FBRA outperforms better than other policies.

Table 3. Comparison table of improvement in FBRA.

Traces % of improvement in FBRA (hit ratio) % of reduction in FBRA (write count)

 LRU CFLRU CCFLRU PTLRU LRU CFLRU CCFLRU PTLRU

T1 18.7 15.1 5.5 2.7 39.2 34.6 22.7 19.0

T2 6.0 3.5 2.3 1.1 37.5 25.9 13.0 4.7

T3 8.9 4.9 4.2 3.6 38.7 26.9 9.5 5.0

V.CONCLUSION

Write operations take more access time than read operations in NAND flash-based storage devices, while erase

operations are substantially lower than write operations. Preferably, the buffer replacement methods must be

developed to result in fewer of write operations in order to obtain a high degree of performance. The proper

J. Electrical Systems 20-2s (2024): 107-119

118

management of buffer improves the efficiency system performance. To tackle the shortcomings of current buffer

replacement algorithms, we presented FBRA which employs the firefly algorithm to predict the fitness value of

pages in buffer. This fitness value helps to categorize buffer pages into hot or cold. The hot pages are kept into

buffer to increase the hit ratio this directly effects the performance of system. Trace driven simulation presents

that FBRA surpasses existing approaches in context of hit ratio, write count and runtime.

REFERENCES

[1] Y. Wei, D. Shin, Nand flash storage device performance in linux file system, in: 2011 6th International Conference on

Computer Sciences and Convergence Information Technology (ICCIT), IEEE, 2011, pp. 574–577.

[2] L. Wu, N. Xiao, F. Liu, Y. Du, S. Li, Y. Ou, Dysource: A high performance and scalable nand flash controller architecture

based on source synchronous interface, in: Proceedings of the 12th ACM International Conference on Computing

Frontiers, 2015, pp. 1–8.

[3] H. Sun, G. Chen, J. Huang, X. Qin, W. Shi, Calmwpc: A buffer management to calm down write performance cliff for

nand flash-based storage systems, Future generation computer systems 90 (2019) 461–476.

[4] S. Nie, Y. Zhang, W. Wu, C. Zhang, J. Yang, Dir: Dynamic request interleaving for improving the read performance of

aged ssds, in: 2019 IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA),IEEE, 2019, pp. 1–6.

[5] J. Kwak, J. Lee, D. Lee, J. Jeong, G. Lee, J. Choi, Y. H. Song, Galru: A group-aware buffer management scheme for

flash storage systems, IEEE Access 8 (2020) 185360–185372.

[6] R. Kumaar, A. Sharma, M. Bhaskar, Reference table based cache design using lru replacement algorithm for last level

cache, in: 2016 IEEE Region 10 Conference (TENCON), IEEE, 2016, pp. 2219–2223.

[7] J. O'neil, P. E. O'neil, G. Weikum, The lru-k page replacement algorithm for database disk buffering, Acm Sigmod

Record 22 (2) (1993) 297–306.

[8] Y.Wang, Y. Yang, C. Han, L. Ye, Y. Ke, Q.Wang, Lr-lru: A pacs-oriented intelligent cache replacement policy, IEEE

Access 7 (2019) 58073–58084.

[9] P. K. Singh, et al., Flash translation layer and its functionalities, in: 2019 IEEE Conference on Information and

Communication Technology, IEEE, 2019, pp. 1–5.

[10] Q. Xia, W. Xiao, High-performance and endurable cache management for flash-based read caching, IEEE Transactions

on Parallel and Distributed Systems 27 (12) (2016) 3518–3531.

[11] S. Elec, Nand flash memory & smart media data book (2010).

[12] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, J. Lee, Cflru: a replacement algorithm for flash memory, in: Proceedings of

the 2006 international conference on Compilers, architecture and synthesis for embedded systems, 2006, pp. 234–241.

[13] H. Jung, H. Shim, S. Park, S. Kang, J. Cha, Lru-wsr: integration of lru and writes sequence reordering for flash memory,

IEEE Transactions on Consumer Electronics 54 (3) (2008) 1215–1223.

[14] Z. Li, P. Jin, X. Su, K. Cui, L. Yue, Ccf-lru: A new buffer replacement algorithm for flash memory, IEEE Transactions

on Consumer Electronics 55 (3) (2009) 1351–1359.

[15] J. Cui,W.Wu, Y.Wang, Z. Duan, Pt-lru: a probabilistic page replacement algorithm for nand flash-based consumer

electronics, IEEE Transactions on Consumer Electronics 60 (4) (2014) 614–622.

[16] Yang, X. S. (2008). Nature-Inspired Metaheuristic Algorithms. Frome: Luniver Press. ISBN 1-905986-10-6.

[17] Xin She Yang. (2011). Optimization Algorithms. Comput. Optimization, Methods and Algorithms, SCI 356. pp. 13–31.

[18] Yang, X.S. (2011). Metaheuristic and Optimization: Algorithm Analysis and Open Problems.Lecture Notes in National

Physical Laboratory, UK.

[19] Yang, X. S. (2010), Firefly Algorithm, Stochastic Test Functions and Design Optimization. Int.

[20] J. Bio-Inspired Computation. 2, No. 2, pp.78–84.

[21] Yang, X. S. (2010). Nature-Inspired Metaheuristic Algorithms. Luniver Press. Second Edition.

[22] Lukasik, S. and Zak, S. (2009). "Firefly Algorithm for continuous constrained optimization Tasks", Lecture Notes in

Computer Science. Vol. 5796, pp. 97-106.

[23] Umass trace repository, http://traces.cs.umass.edu/.

[24] Storage networking industry association, https://www.snia.org/.

[25] X. Su, P. Jin, X. Xiang, K. Cui, L. Yue, Flash-dbsim: a simulation tool for evaluating flash-based database algorithms,

in: 2009 2nd IEEE International Conference on Computer Science and Information Technology IEEE, 2009, pp. 185–

189.

[26] Narayan, Vipul, et al. "7 Extracting business methodology: using artificial intelligence-based method." Semantic

Intelligent Computing and Applications 16 (2023): 123.

[27] Narayan, Vipul, et al. "A Comprehensive Review of Various Approach for Medical Image Segmentation and Disease

Prediction." Wireless Personal Communications 132.3 (2023): 1819-1848.

[28] Mall, Pawan Kumar, et al. "Rank Based Two Stage Semi-Supervised Deep Learning Model for X-Ray Images

Classification: AN APPROACH TOWARD TAGGING UNLABELED MEDICAL DATASET." Journal of Scientific

& Industrial Research (JSIR) 82.08 (2023): 818-830.

J. Electrical Systems 20-2s (2024): 107-119

119

[29] Mall, Pawan Kumar, et al. "FuzzyNet-Based Modelling Smart Traffic System in Smart Cities Using Deep Learning

Models." Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities. IGI Global, 2023. 76-95.

[30] Saxena, Aditya, et al. "Comparative Analysis Of AI Regression And Classification Models For Predicting House

Damages İn Nepal: Proposed Architectures And Techniques." Journal of Pharmaceutical Negative Results (2022): 6203-

6215.

[31] Kumar, Vaibhav, et al. "A Machine Learning Approach For Predicting Onset And Progression"“Towards Early Detection

Of Chronic Diseases “." Journal of Pharmaceutical Negative Results (2022): 6195-6202.

