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Abstract: - The exploration of semantic similarity is a fundamental aspect of natural language processing, as it aids in comprehending 

the significance and usage of vocabulary present in a language. The advent of pre-training language models has significantly simplified 

the process of research in this field. This article delves into the methodology of utilizing the pre-trained language model, BERT, to 

calculate the semantic similarity among Chinese words. In order to conduct this study, we first trained our own model using the bert-

base-chinese pre-trained model. This allowed us to acquire the word embeddings for every single word, which served as the basis for 

calculating semantic similarity. Essentially, word embeddings are vector-based depictions of words that encapsulate word’s 

significance and surroundings, allowing for the measurement of the semantic similarity between words. Next, we executed a sequence 

of experiments to assess the efficiency of the BERT model in managing semantic similarity tasks within the Chinese language. The 

results were encouraging, as the BERT model demonstrated remarkable performance in these tasks. Furthermore, it was observed that 

the BERT model outperformed traditional methods in terms of performance and generalization capabilities. This study, therefore, 

underscores the potential of the BERT model in natural language processing, particularly in the Chinese language. This emphasizes 

the model’s capacity to accurately calculate semantic similarity, paving the way for its widespread adoption in related fields. 
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I. INTRODUCTION  

The issue of semantic similarity in written works is a crucial component of natural language processing, and it 

serves a vital function in text classification, topic retrieval, programmed question and response systems, and textual 

summary research. The present state of research on textual semantic similarity has a profound impact on the 

progress of studies in allied fields. 

In the context of text classification, the incorporation of semantic similarity can significantly enhance 

categorization precision while delving deeper into the semantic level [1]. This is achieved by identifying patterns 

and relationships between words and phrases that share similar meanings, allowing for more accurate classification 

of textual materials. In the realm of topic retrieval, semantic similarity serves as an efficient auxiliary information-

based deep semantic analysis and text retrieval method [2]. By leveraging semantic similarity, retrieval systems 

can uncover hidden patterns and connections within the text, enabling the identification and extraction of relevant 

information more efficiently. In the field of automated Q&A systems, semantic similarity functions as a 

fundamental attribute of Q&A text, enabling the system to filter out more precise responses [3]. By analyzing the 

semantic similarity between questions and answers, these systems can gain a deeper comprehension of the context 

and significance beneath the inquiries, ultimately offering more precise and pertinent replies. In the domain of 

research text summarization, semantic similarity is vital for contextual comprehension and information filtering 

[4]. By considering the semantic similarity between different text passages, summarization algorithms can identify 

the most salient information and generate more coherent and accurate summaries. 

Therefore, the semantic similarity of text itself represents a research direction of significant importance. By 

examining words across multiple texts, the relationships between them are abstracted, parsed, and processed, 

allowing for the mining of deeper connections from a data perspective. This approach can facilitate more accurate 

semantic representation of natural language, contributing to the development of a more refined understanding of 

the interconnectedness of textual data in various contexts. Furthermore, as the volume and diversity of digital 

content continue to grow, the ability to identify and leverage semantic similarity becomes increasingly critical. 
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This is particularly relevant in the realm of big data analytics, where the proficient handling and examination of 

extensive textual data can offer valuable perspectives and aid decision-making across diverse disciplines. In 

conclusion, the study and application of semantic similarity in written works hold great potential for advancing 

natural language processing research and improving the performance of various text-based applications [5]. As the 

domain of natural language processing keeps advancing, the creation of more complex techniques for examining 

and employing semantic resemblance will unquestionably contribute to a deeper comprehension and productive 

application of textual information across various scenarios. 

II. DEVELOPMENT STATUS 

The exploration of semantic similarity was a thriving area of research prior to the introduction of pre-trained 

models such as BERT [6], GPT-3 [7], and RoBERTa [8]. In the absence of these advanced models, the most 

prevalent techniques for semantic similarity tasks revolved around word embedding-based methods, with the 

Word2vec model [9][10] being a prime example. This model has the capability to project words into a low-

dimensional space, where their semantic similarity can be determined by analyzing the resemblance of the vectors 

associated with these words. 

Parallel to this approach, traditional machine learning techniques [11][12] and feature engineering methods 

[13] were extensively used to train models that measured textual similarity. These models often relied on methods 

such as lexical tagging and analysis of syntactic structure. Furthermore, comprehensive knowledge bases like 

WordNet [14], which covers a vast range of English vocabulary, were also employed. In WordNet, nouns, verbs, 

adjectives, and adverbs are organized into separate synonym networks. Each set of synonyms represents a 

fundamental semantic concept, and these sets are interconnected through various relationships. A polyglot word 

appears in a group of synonyms for each of its meanings, which can be used to compute semantic similarity. 

Additionally, corpus-based language models that extract semantic information by analyzing co-occurrence data 

in text were also utilized. LSA [15] and LDA [16] are prominent examples of such models. In general, before the 

emergence of pre-trained language models like BERT, research on semantic similarity primarily relied on statistical 

methods. However, the rise of pre-trained language models has resulted in a notable improvement in the efficiency 

of semantic similarity tasks due to their exceptional performance and the ability to fine-tune these models for 

specific tasks. This allows for a better comprehension and capture of the complex semantic information within the 

text, leading to improved task performance. The future of semantic similarity tasks is likely to focus on the fine-

tuning and advancement of pre-trained models. 

III. USAGE 

A. Processing of Data 

As it is the processing of Chinese text, the following three main problems will be encountered: 

First, Chinese participles can not be like English, there is a space as a separator, and the Chinese text contains 

the phenomenon of multiple meanings of the word inside, which may lead to ambiguity. 

Second, the problem of granularity needs to be considered. The size of the particle size on the results of the 

word has a great impact. For example, the “Northwest Minzu University” for word division, we hope to get the 

result of word division is the “Northwest Minzu University”, but in fact, there will be “Northwest/ Minzu 

/University” such a word division, the meaning of the expression is not very accurate. In the division, the larger 

the granularity, the more accurate the meaning, and the corresponding recall is less. 

Third, the recognition of new words. Nowadays is the era of rapid development of information, new words 

appear every day, and being able to quickly recognize new words is a special point to consider. 

As the data selection is the data crawled on Weibo, the data volume is not very large, and BERT participle 

necessitates a significant amount of computational resources and memory, the participle speed is slow, and for 

Chinese participle and English participle as well, it is divided by a single word, which is not applicable to this task. 

So the stuttering participle tool is chosen to process the data. 

B. Introduction to Bert 

BERT is a type of pre-trained language model. What sets BERT apart from earlier models is that it does not 

employ standard single-direction language models or merely merge two single-direction language models for pre-

training. Instead, BERT introduces a unique method, the masked language model (Mask LM) [17], and incorporates 

a deep bidirectional Transformer component to build the overall model. Consequently, the ultimate outcome is a 
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deep bidirectional language representation model that is capable of grasping and merging both left and right 

contextual data. 

The essence of the BERT model lies in the encoder component of the Transformer structure [18], as illustrated 

in Figure 1. Within this structure, “Add & Norm” denotes the usage of residual connections and layer normalization 

operations; “Feed Forward” signifies the process of linear transformation. Through this linear transformation, the 

data is initially mapped to a high-dimensional space and subsequently mapped to a low-dimensional space. By 

employing this method, deeper features can be extracted. “Multi-Head Attention” breaks down the hidden state 

vector into several sections, forming multiple sub-semantic spaces, enabling the model to attend to information in 

various dimensional semantic spaces. 

 
Figure 1: The Encode Part of the Transform Model 

The BERT model employs a multiple stacking of the encoder section within the Transformer architecture, 

thereby creating a more profound neural network configuration. After multiple layers of stacking, the core part of 

the BERT model is formed, as shown in Figure 2. 

 
Figure 2: BERT Model’s Structure 

Such encoding units make up each layer in the BERT model. In the enhanced version of BERT, there are 24 

levels of encoders, each level equipped with 16 attention heads, and the size of the word vector is 1024. In the 

smaller BERT model, there are 12 levels of encoders, each level equipped with 12 attention heads, and the size of 

the word vector is 768. Regardless of the model size, the feedforward layer’s size is set to 4H (where H is the size 

of the word vector), which is 3072 when H = 768, and 4096 when H = 1024. These parameters create the 

hierarchical structure of the BERT model. 

The BERT model can be simply summarized into three parts, which are input layer, intermediate layer and 

output layer. 
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Input Layer: In order to adapt the BERT model for downstream tasks, the input layer’s statements are typically 

rewritten in the format of [CLS]+A+[SEP], where CLS represents a special token, denoting the classification task, 

and SEP acts as a separator. The input layer’s embedding consists of three components: position embedding, 

segment embedding, and Word piece embedding. Word piece embeddings symbolize the vector representations of 

the words themselves. Word Piece represents the process of decomposing words into a finite collection of 

interchangeable subword components, intending to accomplish a harmony between preserving word viability and 

allowing character adaptability. Position embedding converts the position details of a word into a feature vector. 

As the BERT model’s network structure is identical to the transformer model, there are no RNN or LSTM, making 

it necessary to create a position embedding. Position embeddings can be generated in two ways: the BERT model 

starts with a position embedding and refines it through training; in contrast, the Transformer model creates position 

embedding based on predefined rules. Segment embeddings serve as vector representations for distinguishing two 

sentences, proving particularly useful in situations with asymmetric sentences, such as in question and answer 

tasks. The BERT model’s input components include the following: word piece token embedding, segment 

embedding, and position embedding. 

Middle layer: the middle layer of BERT model is the same as the encoder of transformer, it is composed of 

self-attention layer plus ADD & BatchNorm layer plus FNN. 

Output layer: each input of BERT model corresponds to one output: 

C. Semantic Similarity Calculation Methods 

The approach to calculating semantic similarity employs the cosine similarity algorithm [19]. This approach 

computes the extent of difference between two entities by ascertaining the cosine of the angle separating two 

vectors within a vectorial domain. After undergoing the jieba word segmentation procedure and BERT model 

training, each term in the text is transformed into a corresponding vector depiction. Once the word vectors of each 

word are obtained, the cosine similarity between every pair of words can be calculated. Assuming the word vectors 

of these two words are denoted as X and Y respectively. The equation for cosine similarity is as follows. 

cos(𝑋⃗, 𝑌⃗⃗) =
𝑋⃗⃗⋅𝑌⃗⃗

|𝑋⃗⃗||𝑌⃗⃗|
         (1) 

Vectors X and Y are associated with two distinct points in the coordinate system. Utilize the provided equation 

to determine the cosine value for the two vectors. As the cosine value gets closer to 1, angle comes close to 0, 

indicating a higher level of similarity between the two vectors. In contrast, if the cosine value is near 0, the angle 

leans towards 90 degrees, indicating a lower level of similarity between the two vectors. 

D. Experimental Design 

Step 1: Use Jieba participle to process the text. In the process of text processing, first of all, the text needs to be 

regularized, using regular expressions to remove non-Chinese characters. Second, for some common words such 

as “the”, “is”, “in” and so on does not carry important information, but they will increase the complexity of text 

processing and computational costs. Use the stop word list to filter out these irrelevant words and improve 

processing efficiency. In this paper, the creation of the stop word list takes into account the Chinese stop word list, 

the Harbin Institute of Technology stop word list, the Baidu stop word list, and the stop word library of the Machine 

Intelligence Laboratory of Sichuan University, and combines them into a stop word list totaling 3884 words. Stop 

word list [20]. Since the data comes from Weibo, some words that have no statistical significance are also added, 

such as “wei bo” and “zhuan fa”. In addition, since new words and names often appear on the Internet, the Jieba 

library cannot recognize these words. For example, “Yi Yang Qian Qi” may be split into “Yi / Yang / Qian Qi” 

during the Jieba word segmentation process. Therefore, adding these words to jieba’s vocabulary can obtain more 

accurate word segmentation results. 

Step 2: Use BERT to train the results. In this experiment, we use “AutoTokenizer” to transform the text into 

model input, convert the text into pytorch token type data, and then use “AutoModel” model for training. 

Considering the input length in the BERT model is limited to a maximum of 512 tokens, in the experiment, because 

the input text is too long, it is also necessary to truncate the text, the approach employed involves incorporating a 

sliding window, which serves to partition the text into numerous intersecting segments, and feed each segment into 

the model, and then finally summarize the results of the training of all models. In this experiment, the size of the 

sliding window is set at 512 tokens, with a 128-token overlap. 

Step 3: Find, for each word, the five most acrostic words. Firstly, we need to pass the encoded text to the BERT 

model, and then extract the word embedding of the model’s output using the last_hidden_state () function. Next, 
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for every word, compute its cosine similarity against all other words and ultimately identify the top 5 words with 

the greatest similarity to it. 

Step 4: In an effort to offer a more extensive and profound illustration of the BERT model’s performance 

potential, a comparative study is organized and executed. The process involves the training of our in-house model 

through the word2vec methodology, which has been previously utilized. To maintain a balanced and precise 

comparison, the research is centered on finding and retaining the results for the top five most analogous words 

corresponding to each given word. 

Step 5: Upon the completion of the training phase, the outcomes derived from both the BERT model and the 

word2vec model are meticulously examined and juxtaposed. In order to gauge the precision and dependability of 

each model, the average correlation coefficient of the associated words for each word is calculated. This 

measurement serves as a marker of the model’s ability to identify semantic connections between words. In 

conclusion, the model yielding the higher average correlation coefficient is determined, signifying the model that 

generates more precise outcomes. This comparison enables us to evaluate the efficacy of the BERT model in 

comparison to the word2vec model, offering important insights into the operational efficiency of these cutting-

edge natural language processing techniques. 

IV. RESULTS OF THE EXPERIMENT 

A. Assessment Methodology 

In this experiment, the Pearson correlation coefficient was selected as the evaluation method. This coefficient 

is used to determine the intensity of the correlation between two vectors. Its magnitude can span from -1 to 1. The 

mathematical expression of the Pearson correlation coefficient can be derived from its calculation equation: 

𝑟 =
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)
2∑(𝑌𝑖−𝑌̅)

2
       (2) 

 

Following the computation of the Pearson correlation coefficient, we can evaluate the correlation intensity 

between two words based on the range in Table 1. 

Table 1: Pearson’s Correlation Coefficient Strength Comparison Table 

Absolute value of correlation 

coefficient 
Correlation Intensity 

0.8 to 1.0 Very robust correlation 

0.6 to 0.8 robust correlation 

0.4 to 0.6 Moderately robust correlation 

0.2 to 0.4 Mildly correlation 

0.0 to 0.2 Very mildly correlation 

0.0 No correlation 

B. Results of the Experiment 

In this study, the model’s performance is assessed utilizing the Pearson correlation coefficient. By finding the 

5 most relevant words for each word and by calculating the correlation coefficient between them, we can get so the 

average of Pearson correlation coefficient of all words is 0.7578, which shows that the correlation between each 

word and their 5 most similar words is very strong. On this basis, 4 sets of comparison experiments were done to 

investigate the change of their average Pearson correlation coefficient by decreasing the number of words between 

each word and their most similar words in turn. The findings from the experiments are shown in Table 2. 

Table 2: The Result of Bert Model Training 

Number of similar words found by BERT model Average correlation coefficient 

1 0.8367 

2 0.8073 

3 0.7870 

4 0.7708 

5 0.7578 

Second, with the aim to further confirm the efficiency of the BERT model, this experiment was also compared 

with previous models that can calculate semantic correlation, such as Word2Vec. The average Pearson correlation 

coefficient between each word and the five words they are most similar to was calculated using the Word2vec 

model, and the calculation was performed again after reducing the number of similar words, and the outcomes 

achieved are shown in Table 3. 

Table 3: The Result of Word2vec Model Training 
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Number of similar words found by Word2Vec model Average correlation coefficient 

1 0.3615 

2 0.3661 

3 0.3763 

4 0.3837 

5 0.3903 

C. Analysis of the Results of the Experiment 

In this experiment, the Pearson correlation coefficient between each word and its five most similar words can 

be obtained as 0.7578, which demonstrates a notable association between the two. When the number of similarity 

words to be found decreases, the average Pearson’s correlation coefficient between each word and its most similar 

words increases, indicating that they are also more similar to each other. When looking for the most similar one or 

two, the Pearson correlation coefficient between them reaches more than 0.8, and there is an extremely strong 

correlation between them. There are two possible reasons for this situation.  

First: the dataset used for the experiment is not large enough, and when searching for similar words there may 

be some words whose similarity is not too high will be added, and thereby influencing the magnitude of the Pearson 

correlation coefficient. 

Second: Semantic correlation is usually affected by the local context and polysemy of words. A single word 

may exhibit various meanings in distinct contexts, and this polysemy makes the semantic correlation between 

words more complicated. Pearson’s correlation coefficient usually fails to capture such subtle semantic 

relationships. 

By comparing the results of the Pearson’s correlation coefficient obtained from the BERT model and the 

Word2vec model, it is evident that the BERT model exhibits exceptional performance in analyzing semantic 

correlation, which significantly outperforms the traditional methods. It can be found that the complexity and 

polysemy of semantic similarity can be better captured by the BERT model. The factors leading to this situation 

can be clarified as follows: 

Initially, word2vec encoding is a fixed depiction of a word, indicating that numerous synonyms possess 

identical vector representations. For instance, considering the word “apple,” in the context of fruit, it denotes a 

specific type of fruit, while in the context of the technology corporation, “Apple,” it signifies a completely separate 

entity. In spite of their discrepancies in meaning, word2vec encoding would generate the same outcome for both. 

Conversely, BERT encoding is mutable and considers contextual information to extract features. This mutable 

method addresses the issue of polysemy that emerges in word2vec. Polysemy refers to the occurrence where a 

single word has multiple meanings, which can result in misunderstandings in static depictions like word2vec. 

Additionally, when juxtaposed with the BERT model, the word2vec model provides a single vector 

representation for each word. The BERT model, nevertheless, models tokens and sentences simultaneously and 

includes position encodings. This discrepancy in method enables BERT to comprehend the context in which words 

are employed, which ultimately allows for more precise representations and interpretations of language. 

V. CONCLUSION 

Compared with word2vec, we can get a conclusion that the BERT model has demonstrated its exceptional 

capabilities in examining semantic correlation, surpassing conventional techniques and furnishing researchers and 

developers with a robust natural language processing instrument. 

The development prospects of semantic similarity based on BERT in natural language processing are 

promising. This is demonstrated in several aspects as follows: 

Enhanced Semantic Understanding: As a pre-trained language model, BERT possesses strong semantic 

understanding capabilities and can capture contextual and semantic relationships in text. By utilizing BERT to 

calculate semantic similarity, it can more accurately reflect the meaning similarity between texts, thus improving 

the performance of semantic similarity tasks. 

Wide Applications: BERT-based semantic similarity research can be extensively utilized in numerous natural 

language processing tasks, for example it can be used in text categorization, sentiment evaluation, information 

extraction, and machine-assisted translation. In such tasks, the computation of semantic similarity is instrumental 

in improving the precision and resilience of the models. 

Cross-domain Applications: In addition to natural language processing, semantic similarity research based on 

BERT can also be applied to other fields, such as recommendation systems, knowledge graphs, and bioinformatics. 



J. Electrical Systems 20-2 (2024): 73-79 

79 

In these domains, semantic similarity calculation also holds significant importance and can enhance the efficacy 

and applicability of the models. 

Model Improvement and Novelty: As research deepens, optimizations and improvements can be made to the 

BERT model to adapt to the needs of different scenarios and tasks. For example, efforts can be made to compress 

and prune BERT, reducing model complexity and improving computational efficiency. Alternatively, BERT can 

be combined with other models to fully leverage their respective strengths and improve the performance of 

semantic similarity tasks. 

Cross-lingual Research: Semantic similarity research based on BERT can also be extended to cross-lingual 

domains, investigating semantic similarity between different languages. This can promote the development of 

cross-lingual information retrieval, machine translation, and other tasks, enhancing the cross-lingual transfer 

capabilities of models. 

In conclusion, semantic similarity research based on BERT holds great development prospects and is expected 

to achieve significant breakthroughs within the domain of natural language processing. 
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