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Abstract: - An aircraft object detection method on the basis of improved YOLOv5 was proposed to address the issues of large model 

size, high number of parameters, and inability to meet real-time monitoring requirements of aircrafts in traditional object detection. 

Firstly, the basic unit of ShuffleNetv2 network was optimized through replacing 3x3 convolution with 5x5 convolution and removing 

subsequent 1x1 convolution. Simultaneously, the original ReLU activation function was replaced with PReLU. Secondly, CBAM 

(Convolutional Block Attention Module) attention mechanism was developed to enhance the detection accuracy of the improved 

network. Finally, improved ShuffleNetv2 network was applied as the backbone structure of YOLOv5. Experimental results revealed 

that the parameter number of the improved YOLOv5 method introduced in this paper was decreased by 18 times, with a model size 

of 1.03M. Therefore, a 20.8% increase was achieved in frames per second (FPS) in GPU environments and a 234.6% increase was 

observed in FPS in CPU environments, while a mean average precision (mAP@0.5) of 0.99 was maintained compared with traditional 

YOLOv5 network. Because of the advantages of fewer parameters, faster recognition speed, higher localization accuracy, and smaller 

memory requirement, the developed method was found to be suitable for real-time monitoring of aircrafts in airport surface. 

Keywords: Surface Surveillance, Object Detection, Improved YOLOv5, Shufflenetv2, Activation Functions, Attention Mechanism. 

 

 

I.  INTRODUCTION  

Monitoring of aircrafts in airport is critical for the safe operation of civil aviation. Today, aircraft surveillance 

often involves the integration of multiple information sources, such as airport surveillance radars and multi-point 

positioning systems [1]. However, due to high costs, this is a challenge for regional airports. To solve this issue, 

video surveillance offers a cost-effective alternative, since it does not require onboard receiving equipment 

installation on aircraft. In addition, it can act as a supplementary monitoring tool in radar-obstructed areas. 

Significant progress has been made in image-based object detection with extensive application of deep learning. 

YOLOv3 [2] object detection model, introduced by REDMON et al., introduced a novel method by incorporating 

Darknet-53 fully convolutional network. This innovative model effectively minimized the loss of low-level 

features, utilizing residual structures and multi-scale detection. Therefore, this enhanced accuracy while 

maintaining fast detection. YOLOv4 [3] algorithm developed by Bochkovskiy et al. introduced a novel method for 

achieving enhanced object detection performance by replacing the main network backbone and integrating spatial 

pyramid pooling. This method applied path aggregation network (PAN) for feature fusion. As a different method, 

YOLOv5 [4] proposed five different network architectures with varying depths and widths to enhance object 

detection performance. In addition, YOLOv5 utilized adaptive image scaling and anchor box generation to further 

improve detection accuracy. Ruiz-Barroso [5] developed an approach utilizing region proposal network (RPN) and 

optical flow maps among frames, referred to as optical flow region proposal (OFRP), to automatically identify 

object regions in videos. This advancement significantly enhanced the computational speed of the algorithm in 

both GPU and CPU environments. Yang [6] developed a lightweight real-time detection algorithm on the basis of 

YOLOv4. This algorithm replaced CSPnet in network structure with Ghostnet and regular convolutions were 

substituted with depthwise separable convolutions. In addition, a four-layer pyramid was constructed to enhance 

the accuracy, effectiveness and robustness of the model in aircraft target detection. Although classical algorithms 

have significantly enhanced the speed and accuracy of detection, excessive model parameters and large model sizes 

have restricted their application in real-time airport surface surveillance. 

By analyzing existing algorithms, this research introduced a new method for aircraft object detection in airport 

surface, which addressed various challenges such as excessive model parameters and limited real-time 

performance. The basic units of Shufflenetv2 network were optimized and attention mechanisms were incorporated 

into YOLOv5 backbone network. Therefore, a lightweight aircraft object detection method was proposed with 
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fewer parameters, smaller size, and higher accuracy. This method enabled real-time monitoring of aircrafts in 

airport environments. 

II. IMPROVEMENT OF YOLOV5 ALGORITHM 

A. Principles of YOLOv5 

Aircraft object detection based on video images primarily involves extracting feature maps through 

convolutional neural networks (CNN), fusing features, and finally outputting detection results [7]. Figure 1 

illustrates the developed algorithm flow. 

  
Figure 1: Algorithm Flow of Aircraft Target Detection Process 

Currently, YOLOv5 is mainly adopted for object detection. As a representative one-stage end-to-end detection 

algorithm, YOLOv5 has five distinct models of YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x [8]. 

These models were designed with different sub-module depths and widths and each model achieved improved 

detection accuracy and increased the size of the model in the given order. YOLOv5s effectively balanced parameter 

number and accuracy, making it the optimal choice for aircraft detection in airport surface. 

Detection procedure in YOLOv5 [9] comprised the following four primary components: YOLOv5 architecture, 

as shown in Figure 2, showcasing input stage, Backbone feature extraction stage, Neck feature fusion stage, and 

Head output stage. Before image feeding into the network, data preprocessing was conducted which included 

mosaic data augmentation, adaptive anchor box computation, and dynamic image scaling. In the main network, 

YOLOv5 utilized C3 module to obtain feature fusion and decrease computation cost. Spatial pyramid pooling – 

fast (SPPF) module substituted a single large pooling kernel found in SPP module with multiple smaller pooling 

kernels to further improve processing speed while preserving its original functionality. In Neck feature fusion part, 

the ideas of feature pyramid network (FPN) and PANet were introduced to exchange deep semantic information 

with shallow positional information for enhancing information fusion at multiple scales. In the output phase of 

Head network, various scales of feature maps from Neck were processed to predict and regress target boxes to form 

three prediction boxes for each target using non-maximum suppression for target box selection. 

  
Figure 2: YOLOv5 Architecture Diagram 

Because YOLOv5 backbone network had a complex structure and high computational workload, it resulted in 

slow algorithm execution and large model size. However, in airport surface surveillance, there were challenges due 

to limited computing resources, high real-time requirements, and long-term operation [10]. To address computation 
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resource and real-time performance requirements for airport surface monitoring, an optimization YOLOv5 

approach was developed by replacing its backbone network with Shufflenetv2. 

B. Principles of ShuffleNetV2 Network 

Shufflenetv2 [11] served as a lightweight network structure that incorporated specialized network design and 

channel reordering operations. This architecture effectively reduced computational complexity and improved 

model efficiency, leading to smaller model sizes minimizing storage requirements. In addition, it ensured high 

computation speed, remarkably satisfying real-time monitoring demands. Figure 3 illustrates the basic unit of 

Shufflenetv2; Figure 3(a) represents the basic unit and Figure 3(b) shows downsampling unit. In these figures, 

Conv stands for regular convolution, BN denotes batch normalization, ReLU is activation function, DW Conv 

stands for depthwise convolution, Stride is step length, and Channel Shuffle shows channel shuffling [12-13]. 

 
(a) Shufflenetv2 Basic Unit, (b) Shufflenetv2 Downsampling Unit 

Figure 3: Shufflenetv2 Network Diagram 

However, direct application of classical Shufflenetv2 in airport surface monitoring had some limitations, which 

impacted its detection accuracy and real-time capability. Firstly, classical Shufflenetv2 adopted smaller 

convolutional kernels, which restricted the ability of network to perceive larger objects or complex details in airport 

surface. Since aircrafts in airports come in different sizes and possess intricate structural features, smaller receptive 

fields might not adequately capture target information, reducing detection accuracy. Secondly, classical 

Shufflenetv2 performed a 1x1 convolution operation after depthwise convolution, which increased computational 

burden and model complexity. Since airport surfaces are relatively static, 1x1 convolution was not necessary and 

introduced unnecessary computational overhead, decreasing the efficiency and real-time performance of the 

algorithm. In addition, the original Shufflenetv2 adopted ReLU as its activation function, potentially causing 

information loss and gradient vanishing when handling complex targets. These limitations decreased the 

discriminative ability of the network for complex objects, reducing detection accuracy and robustness. 

To solve these problems, this research optimized Shufflenetv2to adapt to the need of airport surveillance tasks. 

Depthwise convolution kernels were expanded to 5x5 to improve the receptive field of the network. This allowed 

for better capturing of detailed information from complex objects in airport surfaces, improving detection accuracy 

and robustness. In addition, 1x1 convolution operation was removed, which simplified network structure, reduced 

computation load and model complexity, and improved algorithm efficiency and real-time performance. Regarding 

activation functions, PReLU [14] was introduced as a replacement for ReLU. PReLU was a rectified linear unit 

with learnable parameters that provided stronger non-linear fitting capabilities. This change was made for further 

enhancing network accuracy. PReLU activation function was more suitable for adapting to varying shapes and 

appearances of aircrafts in target detection tasks. It enhanced the feature extraction and representation capabilities 

of the network, therefore, enhancing aircraft detection accuracy and robustness. Figure 4 compares PReLU and 
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ReLU activation functions. In aircraft target detection, shapes and appearance features of aircrafts demonstrated 

significant variation and complexity. By utilizing PReLU activation function, network could effectively adapt to 

different shapes and appearances of aircraft targets. This enhanced its extraction capability and represented target 

features, ultimately enhancing detection accuracy and robustness. Figure 5 illustrates the fundamental unit of 

optimized Shufflenet where Figure 5(a) shows the basic unit and Figure 5(b) represents downsampling unit. 

 
Figure 4: Comparison of ReLU and PReLU Activation Functions 

  
(a) Improved Shufflenetv2 Basic Unit, (b) Improved Shufflenetv2 Downsampling Unit 

Figure 5: Improved Shufflenetv2 Network Diagram 

C. Improved YOLOv5 Algorithm 

To further improve aircraft detection performance, an attention mechanism was introduced in optimized 

Shufflenet for improving YOLOv5 backbone network. Common attention mechanisms included squeeze-and-

excitation (SE) [15], SimAM [16], efficient channel attention (ECA) [17], and CBAM [18]. CBAM attention 

mechanism possessed comprehensive channel and spatial attention adjustment capabilities. Unlike standalone 

channel attention mechanisms such as SE or spatial attention mechanisms such as ECA, CBAM concurrently 

assessed channel-to-channel relationships within the feature map and spatial position relationships. This 

comprehensive attention adjustment capability contributed to a more comprehensive enhancement of the ability of 

network to represent and focus on aircraft targets to further improve detection accuracy. Therefore, CBAM 

attention mechanism gained extensive popularity in advanced object detection and image classification tasks, 

achieving good performance. It had advantages in enhancing feature representation and improving object detection 

performance. 



J. Electrical Systems 20-2 (2024): 16-25 

20 

CBAM attention module boosted essential channels and spatial features within the feature map, which 

improved object detection localization accuracy and emphasized on object clustering. This helped address 

challenges such as false and missed detections due to overlapping objects. Therefore, CBAM attention mechanism 

was integrated into YOLOv5 enhancement within Neck structure, as illustrated in Figure 6. 

 
Figure 6: CBAM Attention Mechanism Module 

CBAM module comprised two distinct parts: channel attention module (CAM) and spatial attention module 

(SAM). It enhanced the feature extraction capability and effectively boosted the detection accuracy of the network 

[18]. 

From an input feature map 𝑭 ∈ 𝑹𝑪×𝑯×𝑾, we derive one-dimensional feature map 𝑴𝑪 ∈ 𝑹𝑪×𝟏×𝟏 using Eq. (1), 

and two-dimensional feature map 𝑴𝒔 ∈ 𝑹𝟏×𝑯×𝑾 using Eq. (2). 
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where ⊗ vs element-wvse mnltvplvtctvnn  𝐹′ vs thcnnel uectnre nntpnt  cnd F^” vs spctvcl uectnre nntpnt. 

Therefore, in this research, YOLOv5 backbone structure was replaced by improved Shufflenet network to 

decrease the parameter number and increase the speed of the algorithm. In addition, incorporating CBAM attention 

mechanism enhanced both feature extraction and detection accuracy. Even by decreasing overall parameters and 

computational load, improved YOLOv5 structure maintained its high accuracy. Figure 7 shows the structure of 

improved YOLOv5. 
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Figure 7: Improved YOLOv5 Structure Diagram 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Environment and Dataset Preparation 

To verify the developed method, the airport surface images taken in Linyi Qiyang Airport were applied as 

experimental data, which is a regional airport with a runway grade of 4D. The camera used was HF899_3.0mm 

(110-degree undistorted) and experiments were conducted on a Windows 10 system with an Intel(R) Core(TM) i5-

7300HQ CPU and an NVIDIA GeForce GTX 1050Ti GPU. The simulations were performed using Torch version 

1.11.0+cu113 and Python version 3.7 software. 

A dataset for aircraft detection in airport surface was created by capturing 700 images under different operating 

conditions and time periods. To augment the dataset, the original image data was flipped horizontally and vertically, 

resulting in a total of 2800 images. After manual quality filtering to remove poorly captured images, the final 

dataset contained 2578 images. Then, the processed dataset was manually annotated using LabelImg. The dataset 

was divided into training, testing, and validation sets at 7:2:1 ratio, with 1805 images for training, 515 images for 

testing, and 258 images for validation. Figure 8 illustrates the experimental process. 

  
Figure 8: Experimental Flow for Aircraft Detection in Airport Surface 
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B. Model Training 

In this experiment, the inference speed of the model was measured using frames per second (FPS) on test 

videos. Model complexity was analyzed by examining parameter number (Parameters), while model size was 

quantified in megabytes (Weight Size/MB). Evaluation of the detection performance of the developed model 

involved metrics such as precision (P), mean average precision (mAP), and recall (R) [19], as expressed in Eqs. (5-

7). 
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where P is precision, R is recall, TP is true positives, FP is false positives, FN is false negatives, and AP is the 

area under precision-recall curve, as stated in Eq. (8). 

     
1

0
AP P( R )dR=       (8) 

Considering the influences of both precision and recall, mAP reflected the recognition quality of the model for 

different classes. 

C. Analysis of Experimental Results 

The performances of original YOLOv5, YOLOv5 optimized by Shufflenetv2 and the improved method 

developed in this research and the comparative results of different network models are summarized in Table 1. As 

was seen from the table, our developed method substantially decreased the size and parameter number of network 

model while maintaining its accuracy, recall rate, and mAP values comparable to those of the original YOLOv5 

network. 

Table 1: Performance of Different Network Models 

Model Precision Recall mAP@0.5 Parameters Weight Size/MB 

YOLOv5 0.980 0.976 0.984 7022326 13.6 

YOLOv5-Shufflenet 0.935 0.919 0.953 334199 0.95 

YOLOv5-Improved 0.981 1 0.990 383613 1.03 

Comparison results for enhanced YOLOv5 model with different introduced attention mechanisms are given in 

Table 2. Within these experiments, Method-1, Method-2, and Method-3 improved YOLOv5 model through the 

incorporation of Simam, SE, and ECA attention mechanisms, respectively. Table 2 showed that CBAM attention 

mechanism outperformed other attention mechanisms in terms of Precision, Recall, and mAP. 

Table 2: Comparison of Different Network Models 

Model Precision Recall mAP@0.5 Parameters Weight Size/MB 

Method-1 0.983 0.966 0.986 375050 1.01 

Method-2 0.960 0.966 0.980 506122 1.26 

Method-3 0.978 0.967 0.984 375055 1.01 

YOLOv5-Improved 0.981 1 0.990 383613 1.03 

mAP@0.5 curves for the training processes of YOLOv5 and YOLOv5-improved are illustrated in Figure 9. It 

was observed that, YOLOv5-Improved attained a higher mAP value than YOLOv5 and reached a stable state at 

about 20 training epochs without underfitting or overfitting. However, YOLOv5 demanded about 50 training 

epochs to achieve stability 
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Figure 9: Comparison of mAP@0.5 

Figure 10 shows Box_Loss comparison of YOLOv5 and YOLOv5-Improved. Both YOLOv5 and YOLOv5-

Improved were gradually stabilized after about 100 iterations, but YOLOv5-Improved consistently demonstrated 

lower Box_Loss. This indicated that YOLOv5-Improved reduced boundary loss, thereby enhancing the localization 

capability of the model. 

 
Figure 10: Comparison of Box Loss 

FPS comparisons of YOLOv5-Improved and YOLOv5 on GPU and CPU environments are illustrated in 

Figures 11 and 12, respectively. In GPU environment, YOLOv5-Improved achieved maximum FPS of 85, 

minimum FPS of 70, and average of 77.8, while YOLOv5 achieved maximum FPS of 67, minimum FPS of 58, 

and average of 64.4. Therefore, YOLOv5-Improved was superior to YOLOv5 in terms of average FPS in GPU 

environment, with an improvement of 20.8%. In CPU environment, however, YOLOv5-Aircraft achieved 

maximum FPS of 20, minimum FPS of 14, and average of 17.57, while YOLOv5 attained maximum FPS of 6, 

minimum FPS of 2, and average of 5.25. Consequently, YOLOv5-Improved exhibited a significant improvement 

in average FPS over YOLOv5 in CPU environment, with 234.6% increase. 

 
Figure 11: FPS Comparison in GPU Environment 
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Figure 12: FPS Comparison in CPU Environment 

Detection performances of YOLOv5 and YOLOv5-Aircraft models with different numbers of aircraft are 

shown Figures 13 and 14, respectively. It was evident that YOLOv5-Improved model demonstrated enhanced 

confidence levels in comparison to YOLOv5 model for different aircraft quantities. 

 
Figure 13: Detection Performance of YOLOv5 with Different Aircraft Numbers 

 
Figure 14: Detection Performance of YOLOv5-Aircraft with Different Aircraft Numbers 

IV. CONCLUSIONS 

In this research, a lightweight YOLOv5-based network was specifically designed for aircraft object detection 

in airport surveillance scenarios. This approach utilized an optimized Shufflenet as backbone structure for YOLOv5 

and incorporated CBAM attention mechanism, resulting in the number of parameters of the model is reduced by 

18 times. Model weight size was 1.03M, leading to a 20.8% increase in FPS in GPU environment and a 234.6% 

increase in FPS in CPU environment. However, through achieving model lightweightness, the proposed method 

maintained a comparable mAP@0.5 of 0.99, which was equivalent to YOLOv5 performance. This method 

successfully addressed issues related to large model parameter number, low real-time performance, and high 

hardware cost. Experimental results demonstrated significant performance improvements for YOLOv5-Aircraft in 

both GPU and CPU environments while maintaining high-precision detection, offering a cost-effective solution for 

regional airports. 
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