Traveling Wave Ultrasonic Motor Type Daimler-Benz AWM90–X: Modeling and Simulation Mechanical Characteristics

F. Zohra Kebbab, Z. Boumous, S. Belkhiat

Abstract -- During the last decade, many modeling methods, concerning TWUM, have been proposed to optimize their operational performance such as output speed, torque, power, and efficiency. In this work an analytical modeling is proposed and detailed. The study deals the mathematical model of all parts constituting the piezoelectric motor. The mechanical characteristics are deduced and presented by simulation the mathematical model under environment MATLAB / SIMULINK. The simulation results of dynamic behavior of the motor are compared with experimental measures found in the literature, made on traveling wave piezoelectric motor standard AWM 90-X Daimler-Benz.

Index Terms-- Piezoelectric Motor, Analytical Modeling, Mechanical Characteristics.

1. INTRODUCTION

Rotary ultrasonic motors have been investigated for several years. Their key features are high thrust forces related to their volume, a high holding torque without supply, high torque at low speed and good position-accuracy.

In the last two decades, a considerable progress has been achieved in the development of traveling wave ultrasonic motors (TWUM). Several works describing a range of constructions and their performance have been published [1], [2], [3]. The motors consist of a stator that uses piezoelectric elements to excite vibrations with a frequency in the ultrasonic range and a rotor (rotary motors) or a slider (linear motors) that is driven by a stator via frictional force. Depending on the geometry of the stator, generally two orthogonal vibrations (e.g., two bending vibrations) are superimposed on an elliptical motion on the contact surface between the stator and the rotor. The high-frequency and small-amplitude vibrations then are converted by friction force into a lower frequency macroscopic rotation of the rotor or a linear motion of the slider.

The operational performance of the motor (e.g., output speed, torque, power, and efficiency) are determined mainly by the contact layer material and the prestressing force applied on the rotor. To design a TWUM, it would be valuable to have a mathematical model of the motor that takes account the contact interface, guide a proper choice of contact layer material and understand the contact layer material on motor performance. Furthermore, it would be useful for a priori calculation of motor characteristics, such as no-load speed, stall torque, maximum permissible compressive force, starting up voltage, input power, output power, and efficiency.

During the last decade, many modeling methods have been proposed for TWUM such as the equivalent electric circuit method [4], [5], and the finite element method [6], [7]. The finite element method (FEM) has been developed and extended for the vibrational analysis of piezoelectric structures [6], the steady-state performance and the analysis of a transient response applied to TWUM [7],[8]. A detailed finite element (FE) analysis of the contact surface was presented in [9], but the interaction between the interface forces and the vibrations of the stator was not considered. However, experimental techniques [10] are interesting methods for the determination of the motor characteristics but these ones cannot easily and effectively be used during preliminary design. Many analytical models of TWUM have been published in the literature [11]. Most early literature divided the modeling of TWUM into two steps. Using either analytical methods [11] or FEM [6], [8], another modeling method which integrates equivalent electric circuit, FEM, and mathematical modeling, was developed in [12]. Although the finite element modeling method provides the possibility of precise study on different mechanical parts of the motor, the complexity of FEM models make them improper for practical integration in the overall motor model [4]. It is not suitable for parameters analysis and optimization design of system [13].

In this paper, a contact-layer analysis and a mathematical model of the TWUM is presented. The analysis of contact layer is based on the consideration of contact-layer deformation, strain, and stress within it. The used model permits to run the system model on a PC with efficiency, a short simulation time and a reduced space memory. A mathematical model proposed starts from the model previously studied by Gengore [14].

In the section one a mathematical description of all components of the model is developed. The simulation of the mechanical performance under MATLAB / SIMULINK environment is presented in the section two. The theoretical simulation study are validating by comparison between the experimental results of Daimler–Benz AWM90 Motor.

F. Zohra Kebbab, Z. Boumous, S. Belkhiat are with Electrotechnic Department, DAC HR Laboratory, Ferhat Abbas University, Setif, Algeria (e-mail: Fatima_kebb@yahoo.fr, ziad3@yahoo.fr, belsa_set@yahoo.fr)

II. MATHEMATICAL MODEL OF THE TRAVELING WAVE ULTRASONIC MOTOR

A. Basic assumptions

The structure and driving mechanism of TWUSM are special. Those include lots of non-linear and uncertain factors, and the whole drive course is very complicated.

In order to simplify model, following assumptions are made [13]:

- The rotor is rigid body, its surface is smooth;
- the friction material is visco-elastic, its surface is smooth, neglect the influence of surface roughness;
- the surface of stator teeth is continuous sinusoidal wave, neglect the influence of tooth space;
- Coulomb friction law is valid on the contact interface between stator and rotor.
- The friction layer is divided into tangential and normal system independently, which do not influence each other.

B. Model structure of the traveling wave ultrasonic motor

The objective was to build a complete model of a traveling wave ultrasonic motor using the MATLAB-SIMULINK environment. The model of the motor is structured as illustrated in Fig. 1.

![Fig. 1 Functional diagram of the travelling wave ultrasonic motor](image)

C. Dynamics of the stator deformation

To model the dynamics of the two deformation modes, we referred to the equivalent mechanical diagram of the stator shown in Fig. 2.

![Fig. 2 Equivalent mechanical diagram of the stator dynamics deformation](image)

This enables us to establish (1) and (2) describing the dynamics of the two stator standing waves, we obtain:

\[m_{eff} \ddot{w}_1 + d_{1e} \dot{w}_1 + c_{1e} w_1 = A_1 [1 - \varepsilon_1 U_{p1} + \varepsilon_1 U_{p2}] + F_{s1} \]
\[m_{eff} \ddot{w}_2 + d_{2e} \dot{w}_2 + c_{2e} w_2 = A_2 [1 - \varepsilon_2 U_{p2} + \varepsilon_2 U_{p2}] + F_{s2} \]

- \(m_{eff} \) Stator mass
- \(c_s \) Equivalent rigidity of the stator.
- \(d_{s1,2} \) Damping
- \(A_{1,2} \) Force factor of piezoelectric ceramics.
- \(w_{1,2} \) Deformation amplitude of the two modes
- \(U_{p1,2} \) Phases voltage

The superposition of the two standing waves creates the traveling wave which will be propagated in stator ring. In mathematical terms, this is expressed by (3), thus we obtain:

\[w(x',t) = w_1(t) \sin(kx') + w_2(t) \cos(kx') \]

Where \(k = 2.\pi / \lambda \) is the wave number and \(\lambda \) is the wave length of the mode. The displacement of an unspecified point \(Q \) on the stator surface describes an elliptic trajectory according to (4) (\(a \) is the half-thickness of the stator).

\[w_q(x',t) = w(x',t)u_z - a \frac{\partial}{\partial x} w(x',t)u_x \]

The tangential speed of this point is obtained by deriving the horizontal component from the displacement vector \(w_q(x',t) \) compared to time. We obtain:

\[V_t(x',t) = -a \frac{d}{dt} \left(\frac{\partial}{\partial x} w(x',t) \right) \]
The minus sign in the right-hand side of (5) indicates that the tangential speed of the points on the stator surface is in opposed direction compared to the propagation velocity of the traveling wave. Thus, the rotor is actuated in the opposed direction related to the wave.

The tangential speed of the points on the stator surface actuates the rotor thanks to the friction force which exists in the contact zone between stator and rotor. The contact zone will be studied in the next paragraph.

D. Modeling of mechanical contact between stator and rotor

With assumptions formulated in paragraph 1, (3) and (5), respectively describing the traveling wave and tangential speed, become:

\[w(x', t) = \hat{w}\cos(kx' - \omega t) \]
(6)

\[V_r(x', t) = \hat{V}_r\cos(kx' - \omega t) \]
(7)

Where \(\omega = 2\pi f \), and \(f \) is the resonance frequency. The description of the mechanical contact between stator and rotor in the fixed reference frame related to the stator \((x') \) is not advantageous. Indeed, this phenomenon can be assumed as static if we study it on a reference frame fixed arbitrarily on the traveling wave peak \((x) \). Thanks to the position relation \(x = x' - (\omega / k)t \), we can express (6) and (7) as following:

\[w(x) = \hat{w}\cos(kx) \]
(8)

\[V_r(x) = \hat{V}_r\cos(kx) \]
(9)

Now, these two relations (8) and (9) depend no more on the time. Fig. 3 shows the contact mechanism between stator and rotor for a peak of the traveling wave.

\[x_k = \frac{1}{k}\alpha\cos\left(\frac{w_R - \hat{w}}{\hat{w}}\right) \]
(10)

In the contact zone \((-x_0 \leq x \leq x_0) \), the elastic thickness contraction is given by the expression (11).

\[\Delta w = \hat{w}(\cos kx - \cos kx_k) \]
(11)

The vertical force per unit of length exerted in the contact zone can be expressed by (12).

\[f(x) = k_e\hat{w}(\cos kx - \cos kx_k) \]
(12)

\(ke \) is the equivalent rigidity of elastic thickness. The traction force per unit of length \(\tau(x) \) is easily deduced from (12) by applying the law of friction. The sign function enables us to determine the braking and traction zones according to the stator/rotor contact diagram shown in Fig.3. We obtain:

\[\tau(x) = \text{sgn}(V_r(x) - V_{rotor})\mu f(x) \]
(13)

Where \(\mu \) is the dynamic coefficient of friction. The traction force can now be calculated, associated with a peak of the traveling wave, thanks to (14):

\[F = \int_{-x_k}^{x_k} \tau(x)dx \]
(14)

The motor torque is easily deduced from (14) knowing that in the stator ring we have \(n \) peak of the traveling wave,

\[T = nR_m F \]
(15)

Where \(R_m \) is the average radius of the stator ring.

E. Modeling of the rotor dynamic

It is considered that the rotor has two degrees of freedom, rotation \((\omega_{rotor}) \) and vertically in the driving axis direction \((w_R) \), as shown in the functional diagram (Fig. 2). (16) and (17) describe the rotor dynamics compared with these two degrees of freedom.
\[J\dot{\omega}_{rotor} = T - T_{load} \]
\[m_{rotor}\ddot{w}_R = F_Z - F_N - d_z \dot{w}_R \]

Where:
- \(J \) is the inertia of the rotor.
- \(\omega_{rotor} \) is the rotor angular velocity of the rotor.
- \(T_{load} \) is the load torque.
- \(m_{rotor} \) is the rotor mass.
- \(F_Z \) is the force exerted on the rotor in the axial direction.
- \(F_N \) is the force exerted by the prestressing spring.
- \(d_z \) is the damping in the axial direction.

The force \(F_Z \) exerted on the rotor is caused by the contraction of the elastic thickness (see Fig.3). It is given by (18).

\[F_Z = \int_{z_2}^{z_1} f(x)dx \]

III. SIMULATION

Considering the parameter values of the motor [14] used for the simulation (see table-I), the mathematical model developed [15], [16], [17], [18] was simulated, in the steady and transient state of motor. The optimal parameters of the excitation voltages frequency have been tracked and evaluated to 46.65 kHz as frequency, 570 volt as excitation voltages amplitude and \(\pi/2 \) rd as the shift between the tow excitations.

The performances of the motor were estimated by applying various loads in the phase of the steady state after \(2.5*10^{-3} \) s of operation.

The influence of the application of the loads and consequently the evolution of torque and rotor speed are presented in the following figures.

The first figure (Fig.4), described revolving rotor speed for different cases loads. The first curve represents the rotor speed without load.

From times \(2.5*10^{-3} \) seconds, the motor was loaded by load torque of 1.2Nm, 2.25Nm, 3.25 Nm, 4.3Nm. It will be noticed that the speed decreases, when the applied load increases.

The second figure (Fig.5) shows the motor torque characteristics for various loads, which illustrate what happens if a load torque is applied to the rotor after 2.5 ms of operation: the driving torque provided by the stator has to increase in order to balance the load torque. Therefore, the driving zone widens (the no-slip points move away from the wave crests), whereas the braking zones contract. The rotor velocity is equal to the stator horizontal velocity at the no-slip points; therefore, moving no-slip points down the velocity profile cause the rotor to slow down.

As seen from the transient response in Fig.4, and Fig.5, the settling time of the motor is very small (\(\approx 2.5 \) ms). Very fast response is one of the most important advantages of the traveling wave ultrasonic motor, which makes it suitable for applications with fast response demands such as robot actuators and auto-focus cameras. Small oscillations of the rotor speed and the driving torque are caused by the no ideal traveling wave.
The Comparison of the measurements (represented by * and Δ) with the simulation results (represented by line -) are shown in Fig.6. The simulation curve overlaps with six measured values and closer to five other measured values.

The simulation results indicate that our work group implementation, on the software Matlab/Simulink, of refined measured values and closer to five other measured values. shown in Fig.6. The simulation curve overlaps with six and analytical curve is due to the effect of the temperature of ceramics during the friction of the stator with rotor.

Jianjun Qu, Fengyan Sun, Chunjing Zhao "performance evaluation of traveling wave ultrasonic motor based on a model with visco-elastic friction layer on stator " ultrasonics(5) (2006) 22-31

F.Z Kebbah, M. Djaghoul, Z.Boumous, S.Belkhid "Rotary Ultrasonic Motors: Daimler-Benz AWM 90-X TWUSM motor, Experimental and Simulation mechanical characteristics 2nd International Conference on Electrical Engineering Design and Technologies ICEEDT'08 8-10 November 2008 HAMMAMET, TUNISIA

IV. CONCLUSION

The main contribution of the work presented in this paper consists in the description of analytical modeling of traveling wave ultrasonic motor, and simulation mechanical characteristics.

As technical example of ultrasonic motor the Daimler-Benz AWM90-X motor is presented, by the measurements values obtained from the manufacturer data , and its simulation implemented by our work group.

The modeling of the traveling wave ultrasonic motor and its simulation is an important task to understand the principle of operation and its dynamic behavior.

The confirmation, the identification of simulation results and effectiveness of the mathematical model developed made by comparison with the measured results, shows that the model, reflect the real behavior of the motor, (i.e) the model presented in this paper has the advantage to be relatively simple and quite effective.

For the new needs of applications domains, several types of piezoelectric ultrasonic motors have been suggested and designed and developed, to be used as standard as efficient, particularly the rotary traveling wave ones which are now commercially available ,and applied as auto-focus cameras, in robotics, in medical domain and in aerospace.

V. REFERENCES

TABLE I
PARAMETERS OF AWM90-X MOTOR [14]

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol and value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistances of entries</td>
<td>Rp1= 5 Ω</td>
</tr>
<tr>
<td></td>
<td>Rp2= 5 Ω</td>
</tr>
<tr>
<td>Ceramics capacity</td>
<td>Cp1= 7.8e-9 F</td>
</tr>
<tr>
<td></td>
<td>Cp2= 7.87e-9 F</td>
</tr>
<tr>
<td>Capacity of stator</td>
<td>CpS1= 0.42e-9</td>
</tr>
<tr>
<td></td>
<td>CpS2= 0.428e-9</td>
</tr>
<tr>
<td>Inertia of Rotor</td>
<td>J=3.4367e-004 Kg m²</td>
</tr>
<tr>
<td>Ray</td>
<td>R, w= 40.5e-3 m</td>
</tr>
<tr>
<td>Effective mass</td>
<td>m, eff= 40.5 Kg</td>
</tr>
<tr>
<td>Mass of rotor</td>
<td>m, R = (m, eff+22.8+3)*1e-3 Kg</td>
</tr>
<tr>
<td>The rigidity of Rotor</td>
<td>c, R =300e3 N/m</td>
</tr>
<tr>
<td>Attenuation of Rotor</td>
<td>d, R =50*1e3 Ns/m</td>
</tr>
<tr>
<td>Coefficient of Coulomb of friction</td>
<td>µ = 0.21</td>
</tr>
<tr>
<td>The distance enters the points of surface of stator</td>
<td>a=4.5e-3 m</td>
</tr>
<tr>
<td>Peak of wave numbers</td>
<td>n=11</td>
</tr>
<tr>
<td>Frequency of Resonance</td>
<td>Wres2=wres1</td>
</tr>
<tr>
<td>Wavelength</td>
<td>λ=2piR, w/n m</td>
</tr>
<tr>
<td>Wave numbers</td>
<td>k=2*pi/λ</td>
</tr>
<tr>
<td>The rigidity of the zone of contacts</td>
<td>c, N=8500*1e6 N/m²</td>
</tr>
<tr>
<td>Frequency of Antiresonance</td>
<td>w, ant=2pi46.65 e3 Hz</td>
</tr>
<tr>
<td>Modal mass of Stator</td>
<td>m=0.082 Kg</td>
</tr>
<tr>
<td>Report/ratio of transfer</td>
<td>A1=(mCp1(w, ant1)² - w, res1²)^(1/2) (kgF/s²)^(1/2)</td>
</tr>
<tr>
<td></td>
<td>A2=(mCp2(w, ant2)² - w, res2²)^(1/2) (kgF/s²)^(1/2)</td>
</tr>
<tr>
<td>Rigidity of the stator</td>
<td>c, S1=(w, res1)²*m N/m</td>
</tr>
<tr>
<td>Factor of disturbance</td>
<td>ε1= ε2= ε1 = 0.02</td>
</tr>
<tr>
<td>Damping ratios</td>
<td>d, S2=d, S1 d, S1=10 Ns/m</td>
</tr>
</tbody>
</table>