This paper proposes Artificial Neural Network (ANN) model for the required DC-DC Converter Duty Cycle feeding Maximum Power to resistive load to be used for distributed generation (DG) applications. It proposes a PV module when coupled to a load through DC-DC Converter to supply this resistive load with the maximum power from the PV module. Some of DC-DC converters topologies are discussed in brief with concentration on Cuk and SEPIC Converters operations. The mechanism of load matching is described to give the required converter duty cycle at maximum power point (MPP). Relations in 3D figures are introduced for the most probable situations for irradiance and temperature with the corresponding PV voltage and current. Also, 3D figures for the desired duty cycle, output voltage and current of DC-DC converter to gain the maximum power to the resistive load at various irradiance and temperature values. Moreover; Artificial Neural Network (ANN) is used to implement a neural model with its algebraic function to take the probable system situations and outs the proposed converter duty cycle to give maximum power for the load. All the neural model are done with their hidden and output layers’ suitable neurons numbers and suitable performance goals depending on the 3D simulation figures shown in the paper.

Keywords: Distributed generation, Maximum Power, DC-DC Converter, PV Module, ANN and MATLAB.

1. Introduction

A PV array is usually oversized to compensate for a low power yield during winter months. This mismatching between a PV module and a load requires further over-sizing of the PV array and thus increases the overall system cost. To mitigate this problem, a maximum power point tracker (MPPT) can be used to maintain the PV module’s operating point at the MPP. MPPTs can extract more than 97% of the PV power when properly optimized. A typical photovoltaic system may consist of the solar generator itself and other components that maybe one of the following: storage elements (especially in stand-alone systems); the utility grid; power converters (DC/DC or Inverters) and associated control circuitry [1-7]. DC-DC converters are electronic devices that are used whenever we want to change DC electrical power efficiently from one voltage level to another. In all applications, we want to perform the conversion with the highest possible efficiency. DC-DC Converters are needed because unlike AC, DC can’t simply be stepped up or down using a transformer. In many ways, a DC-DC converter is the DC equivalent of a transformer. They essentially just change the input energy into a different impedance level. So whatever the output voltage level, the output power all comes from the input; there’s no energy manufactured inside the converter. Quite the contrary, in fact some is inevitably used up by the converter circuitry and components, in doing their job. The Boost converter is another simple power electronic converter and basically consists of a voltage source, an inductor, a power electronic switch (usually a MOS-FET or an IGBT) and a diode. It usually also has a filter capacitor to smoothen the output. Buck converters provide longer
battery life for mobile systems that spend most of their time in “stand-by”. Buck regulators are often used as switch-mode power supplies for baseband digital core and the power amplifier [8-13]. This paper proposes the part of DC-DC Converter coupled with resistive load and supplying it with Maximum Power as shown in figure 1.

Figure 1. Simple DG System with DC-DC Converter and Resistive Load

2. Maximum Power Point for Resistive Load

When a PV module is directly coupled to a load, the PV module’s operating point will be at the intersection of its I–V curve and the load line which is the I-V relationship of load. For example in figure 2, a resistive load has a straight line with a slope of 1/RLoad as shown in Figure 3. In other words, the impedance of load dictates the operating condition of the PV module. In general, this operating point is seldom at the PV module’s MPP, thus it is not producing the maximum power.

A PV array is usually oversized to compensate for a low power yield during winter months. This mismatching between a PV module and a load requires further over-sizing of the PV array and thus increases the overall system cost. To mitigate this problem, a maximum power point tracker (MPPT) can be used to maintain the PV module’s operating point at the MPP. MPPTs can extract more than 97% of the PV power when properly optimized. This section discusses the I-V characteristics of PV module and resistive load, matching between the two, and the use of DC-DC converters as a means of MPPT.

Figure 2. PV module with a resistive load.
3. DC-DC Converter

The heart of MPPT hardware is a switch-mode DC-DC converter. It is widely used in DC power supplies and DC motor drives for the purpose of converting unregulated DC input into a controlled DC output at a desired voltage level [14]. MPPT uses the same converter for a different purpose: regulating the input voltage at the PV MPP and providing load-matching for the maximum power transfer. There are a number of different topologies for DC-DC converters. They are categorized into isolated or non-isolated topologies.

The isolated topologies use a small-sized high-frequency electrical isolation transformer which provides the benefits of DC isolation between input and output, and step up or down of output voltage by changing the transformer turns ratio. They are very often used in switch-mode DC power supplies [15]. Popular topologies for a majority of the applications are fly-back, half-bridge, and full-bridge. In PV applications, the grid-tied systems often use these types of topologies when electrical isolation is preferred for safety reasons. Non-isolated topologies do not have isolation transformers.

These topologies are further categorized into three types: step down (buck), step up (boost), and step up & down (buck-boost). The buck topology is used for voltage step-down. In PV applications, the buck type converter is usually used for charging batteries and in LCB for water pumping systems. The boost topology is used for stepping up the voltage. The grid-tied systems use a boost type converter to step up the output voltage to the utility level before the inverter stage. Then, there are topologies able to step up and down the voltage such as: buck-boost, Cúk, and SEPIC (stands for Single Ended Primary Inductor Converter).

For PV system with batteries, the MPP of commercial PV module is set above the charging voltage of batteries for most combinations of irradiance and temperature. A buck converter can operate at the MPP under most conditions, but it cannot do so when the MPP goes below the battery charging voltage under a low-irradiance and high-temperature condition. Thus, the additional boost capability can slightly increase the overall efficiency [16].

3.1 Cúk and SEPIC Converters

The buck converter is the simplest topology and easiest to understand and design, however it exhibits the most severe destructive failure mode of all configurations [15]. Another disadvantage is that the input current is discontinuous because of the switch located at the input, thus good input filter design is essential. Other topologies capable of voltage step-down are Cúk and SEPIC. Even though their voltage step-up function is...
optional for LCB application, they have several advantages over the buck converter. They provide capacitive isolation which protects against switch failure (unlike the buck topology). The input current of the Cuk and SEPIC topologies is continuous, and they can draw a ripple free current from a PV array that is important for efficient MPPT. Figure 4 shows a circuit diagram of the basic Cuk converter. It is named after its inventor. It can provide the output voltage that is higher or lower than the input voltage.

The SEPIC, a derivative of the Cuk converter, is also able to step up and down the voltage. Figure 5 shows a circuit diagram of the basic SEPIC converter. The characteristics of two topologies are very similar. They both use a capacitor as the main energy storage. As a result, the input current is continuous. The circuits have low switching losses and high efficiency [15]. The main difference is that the Cuk converter has a polarity of the output voltage reverse to the input voltage.

The input and output of SEPIC converter have the same voltage polarity; therefore the SEPIC topology is sometimes preferred to the Cuk topology. SEPIC may be also preferred for battery charging systems because the diode placed on the output stage works as a blocking diode preventing an adverse current going to PV source from the battery. The same diode, however, gives the disadvantage of high-ripple output current. On the other hand, the Cuk converter can provide a better output current characteristic due to the inductor on the output stage [14]. Therefore, this paper decides on the Cuk converter because of the good input and output current characteristics.

![Figure 4. Circuit diagram of basic Cuk](image)

![Figure 5. Circuit diagram of basic SEPIC converter.](image)

3.2 Basic Operation of Cuk Converter

The basic operation of Cuk converter in continuous conduction mode is explained here. In steady state, the average inductor voltages are zero, thus by applying Kirchoff’s voltage law (KVL) around outermost loop of the circuit shown in figure 4.

\[V_{C1} = V_i + V_o \ldots (1) \]

Assume the capacitor \((C_j) \) is large enough and its voltage is ripple free even though it stores and transfer large amount of energy from input to output [14] (this requires a good low ESR capacitor). The initial condition is when the input voltage is turned on and switch \((SW) \) is off. The diode \((D) \) is forward biased, and the capacitor \((C_j) \) is being charged. The operation of circuit can be divided into two modes.

3.2.1 Mode 1: When SW turns ON, the circuit becomes one

The voltage of the capacitor \((C_j) \) makes the diode \((D) \) reverse-biased and turned off. The capacitor \((C_j) \) discharge its energy to the load through the loop formed with \(SW \cdot C2 \cdot R_Load \).
and I_{L_2}. The inductors are large enough, so assume that their currents are ripple free. Thus, the following relationship is established.

$$-I_{C_1} = I_{L_2} \ldots (2)$$

![Figure 6. Basic Cuk converter when the switch is ON.](image)

3.2.2 Mode 2: When SW turns OFF, the circuit becomes one

The capacitor (C_1) is getting charged by the input (V_s) through the inductor (L_1). The energy stored in the inductor (L_2) is transferred to the load through the loop formed by D, C_2, and R_{Load}. Thus, the following relationship is established.

$$I_{C_1} = I_{L_1} \ldots (3)$$

For periodic operation, the average capacitor current is zero. Thus, from the equation (2) and (3):

$$-I_{L_2} \cdot DT + I_{L_1} \cdot (1 - D) \cdot T = 0 \ldots (4)$$

$$I_{L_1} / I_{L_2} = D / (1 - D) \ldots (5)$$

where: D is the duty cycle ($0 < D < 1$), and T is the switching period.

Assuming that this is an ideal converter, the average power supplied by the source must be the same as the average power absorbed by the load.

$$P_{in} = P_{out} \ldots (7)$$

$$V_s \cdot I_{L_1} = V_o \cdot I_{L_2} \ldots (8)$$

$$I_{L_1} / I_{L_2} = V_o / V_s \ldots (9)$$

Combining the equation (6) and (9), the following voltage transfer function is derived [14].

$$V_o / V_s = D / (1 - D) \ldots (10)$$

Its relationship to the duty cycle (D) is:

- If $0 < D < 0.5$ the output is smaller than the input.
- If $D = 0.5$ the output is the same as the input.
- If $0.5 < D < 1$ the output is larger than the input.

3.3 Mechanism of Load Matching

As described before, when PV is directly coupled with a load, the operating point of PV is dictated by the load (or impedance to be specific). The impedance of load is described as below.

$$R_{Load} = V_o / I_o \ldots (11)$$

Where: V_o is the output voltage, and I_o is the output current.

The optimal load for PV is described as:

$$R_{opt} = V_{MPP} / I_{MPP} \ldots (12)$$
Where: V_{MPP} and I_{MPP} are the voltage and current at the MPP respectively. When the value of R_{Load} matches with that of R_{opt}, the maximum power transfer from PV to the load will occur. These two are, however, independent and rarely matches in practice. The goal of the MPPT is to match the impedance of load to the optimal impedance of PV. The following is an example of load matching using an ideal (loss-less) Cuk converter. From the equation (10):

$$V_s = \frac{1-D}{D} V_o$$

From the equation (9)

$$\frac{I_s}{I_o} = \frac{I_{L1}}{I_{L2}} = \frac{V_o}{V_s}$$

From the equation (13) and (14)

$$I_s = \frac{D}{1-D} I_o$$

From the equation (13) and (15), the input impedance of the converter is:

$$R_{in} = \frac{V_s}{I_s} = \frac{(1-D)^2 V_o}{D^2 I_o} = \frac{(1-D)^2}{D^2} R_{Load}$$

As shown in figure 8, the impedance seen by PV is the input impedance of the converter (R_{in}). By changing the duty cycle (D), the value of R_{in} can be matched with that of R_{opt}. Therefore, the impedance of the load can be anything as long as the duty cycle is adjusted accordingly.

![Diagram of DC-DC Converter](image)

Figure 8. The impedance seen by PV is R_{in} that is adjustable by duty cycle (D).

3.4 Maximum Power Point Algorithm

The location of the MPP in the I–V plane is not known beforehand and always changes dynamically depending on irradiance and temperature. Therefore, the MPP needs to be located by tracking algorithm, which is the heart of MPPT controller. The example of resistive load matching is elaborated here to show how the output voltage and current change with varying irradiation and temperature. The maximum power transfer occurs when the input impedance of converter matches with the optimal impedance of PV module, as described in the equation below.

$$R_{in} = R_{opt} = \frac{V_{MPP}}{I_{MPP}}$$

The required duty cycle (D) for the Cuk converter is:
The converter output voltage is:

\[V_o = \frac{D}{1 - D} V_s \] \hspace{1cm} (19)

The converter output voltage is:

\[I_o = \frac{1 - D}{D} I_s \] \hspace{1cm} (20)

It should be notified that, if the application requires a constant voltage, it must employ batteries to maintain the voltage constant. Also, of course, in reality DC-DC converter used in MPPT is not 100% efficient. The efficiency gain from MPPT is large, but the system needs to take efficiency loss by DC-DC converter into account. There is also tradeoff between efficiency and the cost. It is necessary for PV system engineers to perform economic analysis of different systems and also necessary to seek other methods of efficiency improvement such as the use of a sun tracker.

4. PV Cell Model

The use of equivalent electric circuits makes it possible to model characteristics of a PV cell. The method used here is implemented in MATLAB programs for simulations. The same modeling technique is also applicable for modeling a PV module. There are two key parameters frequently used to characterize a PV cell. Shorting together the terminals of the cell, the photon generated current will follow out of the cell as a short-circuit current (Isc).

Thus, \(I_{ph} = I_{sc} \), when there is no connection to the PV cell (open-circuit), the photon generated current is shunted internally by the intrinsic p-n junction diode. This gives the open circuit voltage (Voc). The PV module or cell manufacturers usually provide the values of these parameters in their datasheets [35]. The ASE-300-DGF/50 is an industrial-grade solar power module built to the highest standards. Extremely powerful and reliable, the module delivers maximum performance in large systems that require higher voltages, including the most challenging conditions of military, utility and commercial installations.

For superior performance, quality and peace of mind, the ASE-300-DGF/50 is renowned as the first choice among those who recognize that not all solar modules are created equal [35]. The simplest model of a PV cell equivalent circuit consists of an ideal current source in parallel with an ideal diode. The current source represents the current generated by photons (often denoted as \(I_{ph} \) or \(I_L \)), and its output is constant under constant temperature and constant incident radiation of light. The PV panel is usually represented by the single exponential model or the double exponential model. The single exponential model is shown in fig. 9. The current is expressed in terms of voltage, current and temperature as shown in equation 21 [36].

![Figure 9. Single exponential model of a PV Cell.](image)
\[
I = I_{ph} - I_0 \left(\exp \left(\frac{q(V + IR_s)}{AT} \right) - 1 \right) - \frac{V + IR_s}{R_p} \tag{21}
\]

\[
I = I_{ph} - I_s \left(\exp \left(\frac{q(V + IR_p)}{AT} \right) - 1 \right) - I_s \left(\exp \left(\frac{q(V + IR_s)}{AT} \right) - 1 \right) - \frac{V + IR_s}{R_s} \tag{22}
\]

Where \(I_{ph} \): the photo generated current; \(I_0 \): the dark saturation current; \(I_{s1} \): saturation current due to diffusion; \(I_{s2} \): is the saturation current due to recombination in the space charge layer; \(I_{Rp} \): current flowing in the shunt resistance; \(R_s \): cell series resistance; \(R_p \): the cell (shunt) resistance; A: the diode quality factor; q: the electronic charge, \(1.6 \times 10^{-19} \) C; k: the Boltzmann’s constant, \(1.38 \times 10^{-23} \) J/K; and T: the ambient temperature, in Kelvin.

Eq.21 and Eq.22 are both nonlinear. Furthermore, the parameters (\(I_{ph}, I_{s1}, I_{s2}, R_s, R_{sho} \) and A) vary with temperature, irradiance and depend on manufacturing tolerance. Numerical methods and curve fitting can be used to estimate [36], [37].

There are three key operating points on the IV curve of a photovoltaic cell. They are the short circuit point, maximum power point and the open circuit point. At the open – circuit point on the IV curve, \(V = V_{oc} \) and \(I = 0 \). After substituting these values in the single exponential equation (21) the equation can be obtained [36].

\[
0 = I_{ph} - I_0 \left(\exp \left(\frac{qV_{oc}}{AT} \right) - 1 \right) - \frac{V_{oc}}{R_p} \tag{23}
\]

At the short – circuit point on the IV curve, \(I = I_{sc} \) and \(V = 0 \). Similarly, using equation (1), we can obtain.

\[
I_{sc} = I_{ph} - I_0 \left(\exp \left(\frac{qI_{sc}R_s}{AT} \right) - 1 \right) - \frac{I_{sc}R_s}{R_p} \tag{24}
\]

At the maximum – power point of the IV curve, we have \(I = I_{mp} \) and \(V = V_{mp} \). We can use these values to obtain the following:

\[
I_{mp} = I_{ph} - I_0 \left(\exp \left(\frac{qV_{mp} + I_{mp}R_s}{AT} \right) - 1 \right) - \frac{V_{mp} + I_{mp}R_s}{R_p} \tag{25}
\]

The power transferred to the load can be expressed as

\[
P = IV \tag{26}
\]

We can estimate the diode quality factor as:

\[
A = \frac{V_{mp} + I_{mp}R_s}{V_{mp} + I_{mp}R_s - V_{oc}} \tag{27}
\]

\[
V_T \ln \left(I_{sc} - \frac{V_{mp}}{R_{sho}} \right) - \ln (I_{sc} - \frac{V_{oc}}{R_p}) + \frac{I_{mp}}{I_{sc} - (V_{oc}/R_{sho})} \right) \right) \right)
\]

And

\[
R_p = R_{sho} \tag{28}
\]

\[
I_o = (I_{sc} - \frac{V_{oc}}{R_p}). \exp \left(- \frac{V_{oc}}{AV_T} \right) \tag{29}
\]
\[R_s = R_{so} - \frac{AR_s}{I_o} \cdot \exp(-\frac{V_{oc}}{AV_T}) \]

(30)

\[I_{ph} = I_{sc} (1 + \frac{R_s}{R_p}) + I_o (\exp \frac{I_{sc}R_s}{AV_T} - 1) \]

(31)

As a very good approximation, the photon generated current, which is equal to \(I_{sc} \), is directly proportional to the radiance, the intensity of illumination, to PV cell [38]. Thus, if the value, \(I_{sc} \), is known from the datasheet, under the standard test condition, \(G_o = 1000 \text{W/m}^2 \) at the air mass (\(AM \)) = 1.5, then the photon generated current at any other irradiance, \(G (\text{W/m}^2) \), is given by:

\[I_{sc[G]} = \left(\frac{G}{G_0} \right) I_{sc[G0]} \]

(32)

It should be notified that, in a practical PV cell, there is a series of resistance in a current path through the semiconductor material, the metal grid, contacts, and current collecting bus [39]. These resistive losses are lumped together as a series resistor (Rs). Its effect becomes very conspicuous in a PV module that consists of many series-connected cells, and the value of resistance is multiplied by the number of cells. Shunt resistance is a loss associated with a small leakage of current through a resistive path in parallel with the intrinsic device [39]. This can be represented by a parallel resistor (Rp). Its effect is much less conspicuous in a PV module compared to the series resistance so it may be ignored [39], [40]. The ideality factor denoted as \(A \) and takes the value between one and two (as to reach the nominated characteristics) [40].

5. Photovoltaic Module Modeling

A single PV cell produces an output voltage less than 1V, thus a number of PV cells are connected in series to achieve a desired output voltage. When series-connected cells are placed in a frame, it is called as a module. When the PV cells are wired together in series, the current output is the same as the single cell, but the voltage output is the sum of each cell voltage. Also, multiple modules can be wired together in series or parallel to deliver the voltage and current level needed. The group of modules is called an array. The panel construction provides protection for individual cells from water, dust etc, as the solar cells are placed into an encapsulation of flat glass. Our case here depicts a typical connection of 216 cells that are connected in series [35]. The strategy of modelling a PV module is no different from modelling a PV cell. It uses the same PV cell model. The parameters are the all same, but only a voltage parameter (such as the open-circuit voltage) is different and must be divided by the number of cells. An electric model with moderate complexity [17] is shown in figure 3, and provides fairly accurate results. The model consists of a current source (Isc), a diode (D), and a series resistance (Rs). The effect of parallel resistance (Rp) is very small in a single module, thus the model does not include it. To make a better model, it also includes temperature effects on the short-circuit current (Isc) and the reverse saturation current of diode (Io). It uses a single diode with the diode ideality factor set to achieve the best I-V curve match.

![Figure 11. Equivalent circuit used in the simulations.](image-url)
The equation (33) describes the current-voltage relationship of the PV cell.

\[I = I_{sc} - I_o \left(\exp \left(\frac{V + IR}{AT} \right) - 1 \right) \] \hspace{1cm} (33)

Where: \(I \) is the cell current (the same as the module current); \(V \) is the cell voltage = \{module voltage\}/\{No. of cells in series\}; \(T \) is the cell temperature in Kelvin (K).

First, calculate the short-circuit current \((I_{sc}) \) at a given cell temperature \((T) \):

\[I_{sc} |_T = I_{sc} |_{T_{ref}} \left[1 + a \left(T - T_{ref} \right) \right] \] \hspace{1cm} (34)

Where: \(I_{sc} \) at \(T_{ref} \) is given in the datasheet (measured under irradiance of 1000W/m²), \(T_{ref} \) is the reference temperature of PV cell in Kelvin (K), usually 298K (25°C), \(a \) is the temperature coefficient of \(I_{sc} \) in percent change per degree temperature also given in the datasheet.

The short-circuit current \((I_{sc}) \) is proportional to the intensity of irradiance, thus \(I_{sc} \) at a given irradiance \((G) \) is introduced by Eq. 32. The reverse saturation current of diode \((I_o) \) at the reference temperature \((T_{ref}) \) is given by the equation (35) with the diode ideality factor added:

\[I_o = \frac{I_{sc}}{\left(\exp \left(\frac{V_{oc} - I_o A \frac{K}{q} E_g}{T_{ref}} \right) - 1 \right)} \] \hspace{1cm} (35)

The reverse saturation current \((I_o) \) is temperature dependent and the \(I_o \) at a given temperature \((T) \) is calculated by the following equation [41].

\[I_{oT} = I_{oT_{ref}} \left(\frac{T}{T_{ref}} \right)^{1/2} \exp \left(- \frac{qE_g}{A K} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right) \] \hspace{1cm} (36)

The diode ideality factor \((A) \) is unknown and must be estimated. It takes a value between one and two; however, the more accurate value is estimated by curve fitting [41] also, it can be estimated by try and error until accurate value achieved. \(E_g \) is the Band gap energy (1.12 V (Si); 1.42 (GaAs); 1.5 (CdTe); 1.75 (amorphous Si)). The series resistance \((R_s) \) of the PV module has a large impact on the slope of the I-V curve near the open-circuit voltage \((V_{oc}) \), hence the value of \(R_s \) is calculated by evaluating the slope \(dI/dV \) of the I-V curve at the \(V_{oc} \) [41]. The equation for \(R_s \) is derived by differentiating the I-V equation and then rearranging it in terms of \(R_s \) as introduced in equation (37).

\[R_s = - \left. \frac{dV}{dI} \right|_{V_{oc}} - \frac{AKT}{q} \frac{1}{I_o \exp(\frac{qV_{oc}}{AK})} \] \hspace{1cm} (37)

Where: \(\left. \frac{dV}{dI} \right|_{V_{oc}} \) is the slope of the I-V curve at the \(V_{oc} \) (using the I-V curve in the datasheet then divide it by the number of cells in series); \(V_{oc} \) is the open-circuit voltage of cell (Dividing \(V_{oc} \) in the datasheet by the number of cells in series).

Finally, the equation of I-V characteristics is solved using the Newton’s method for rapid convergence of the answer, because the solution of current is recursive by inclusion of a series resistance in the model [41]. The Newton’s method is described as:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \] \hspace{1cm} (38)

Where: \(f'(x) \) is the derivative of the function, \(f(x) = 0 \), \(x_n \) is a present value, and \(x_{n+1} \) is a next value.
\[f(I) = I_{sc} - I - I_o (\exp(q(V + IR_s)/AK) - 1) = 0 \] (39)

By using the above equations the following output current \((I)\) is computed iteratively.

\[I_{n+1} = I_n - \frac{I_{sc} - I - I_o (\exp(q(V + IR_s)/AK) - 1)}{-1 - I_o (\frac{qR_s}{AK}) \exp(q(V + IR_s)/AK)} \] (40)

The figures of I-V characteristics at various module temperatures are simulated with the MATLAB model for our PV module are shown. Also, the P-V relations at various module temperatures are presented. All of these are done at various irradiance values are introduced.

6. Simulation Results

The calculation results are presented by two ways: one in 2D figures, and other with the use of 3D figures. These results are based on PV module data and the MATLAB simulation model which implemented in previous section. Relations between all possible predicted resistances values for all the entire I-V curves with the desired optimum resistance values are presented at the first from figure 12 to figure 15. We want the converter to make the load matching at the points of intersections between the curves for the most probable global values of the load resistances and the straight lines of optimum load values in order to transfer the required maximum power for the resistive load.

Figure 12. Resistive load & Optimum resistance values with Voltage at 1 kW/m² Irradiance

Figure 13. Resistive load & Optimum resistance with Voltage at 0.75 kW/m² Irradiance
After that, a set of 3 D figures (from fig. 16 to fig. 23) are proposed to cover the most probable situations at various irradiance, various temperature with the current, and the voltage of the PV module. These surface faces relations will be considered later as the input learning or training data for the proposed neural network model. All these figures are based on the MATLAB PV module modeling introduced before.
Figure 18. Voltage & Temperature (0.75KW/m²)

Figure 19. Current & Temperature (0.75KW/m²)

Figure 20. Voltage & Temperature (0.50KW/m²)

Figure 21. Current & Temperature (0.50KW/m²)
Finally, the relations of converter duty cycle, converter output voltage, and converter output current values to transfer the maximum power from the PV module to various values of resistive loads. The converter duty cycle values from these relations are taken as target or output values. These relations are presented with variable values of temperature and irradiance in figures from 24 to 35.
Figure 25. Converter Output Voltage for max. power with Temp. and 1 kW/m² Irradiance

Figure 26. Converter Output Current for max. power with Temp. and 1 kW/m² Irradiance

Figure 27. Converter Duty Cycle for max. power with Temp. and 0.75 kW/m² Irradiance

Figure 28. Converter Output Voltage for max. power with Temp. and 0.75 kW/m² Irradiance
Figure 29. Converter Output Current for max. power with Temp. and 0.75 kW/m² Irradiance

Figure 30. Converter Duty Cycle for max. power with Temp. and 0.50 kW/m² Irradiance

Figure 31. Converter Output Voltage for max. power & Temp. and 0.50 kW/m² Irradiance

Figure 32. Converter Output Current for max. power with Temp. and 0.50 kW/m² Irradiance
Figure 33. Converter Duty Cycle for maximum power & Temp. and 0.25 kW/m² Irradiance

Figure 34. Converter Output Voltage for max. power with Temp. and 0.25 kW/m² Irradiance

Figure 35. Converter Output Current for max. power with Temp. and 0.25 kW/m² Irradiance

7. Artificial Neural Networks (ANNs) Technique

An ANN consists of very simple and highly interconnected processors called neurons. The neurons are connected to each other by weighted links over which signals can pass. Each neuron receives multiple inputs from other neurons in proportion to their connection weights and generates a single output which may propagate to several other neurons [17]. Among the various kinds of ANNs that exist, the Back-propagation learning algorithm has become the most popular used method in engineering application. It can be applied to any feed-forward network with differentiable activation functions [18], and it is the type of network used in this paper.

7.1 Fundamentals of Neural Network

The ANN modeling is carried out in two steps; the first step is to train the network, whereas the second step is to test the network with data, which were not used for training. It
is important that all the information the network needs to learn is supplied to the network as a data set. When each pattern is read, the network uses the input data to produce an output, which is then compared to the training pattern. If there is a difference, the connection weights are altered in such a direction that the error is decreased. After the network has run through all the input patterns, if the error is still greater than the maximum desired tolerance, the ANN runs through all the input patterns repeatedly until all the errors are within the required tolerance [19], [20].

7.2 Data Collection, Analysis and Processing

Quality, availability, reliability, repeatability, and relevance of the data used to develop and run the system is critical to its success. Data processing starts from the data collections and analysis followed by pre-processing and then feeds to the neural network.

7.3 Network Structure Design

Though theoretically there exists a network that can simulate a problem to any accuracy, there is no easy way to find it. To define an exact network architecture such as how many hidden layers should be used, how many units should there be within a hidden layer for a certain problem is a painful job.

7.3.1 Number of Hidden Layers

Because networks with two hidden layers can represent functions with any kind of shapes, there is no theoretical reason to use networks with more than two hidden layers. In general, it is strongly recommended that one hidden layer be the first choice for any feed-forward network design [17-20].

7.3.2 Number of Hidden Units (node)

Another important issue in designing a network is how many units to place in each layer. Using too few units can fail to detect the signals fully in a complicated data set, leading to under fitting. Using too many units will increase the training time, perhaps so much that it becomes impossible to train it adequately in a reasonable period of time. The best number of hidden units depends on many factors – the numbers of input and output units, the number of training cases, the amount of noise in the targets, the complexity of the error function, the network architecture, and the training algorithm. The best approach to find the optimal number of hidden units is trial and error.

7.3.3 Initializing Back-Propagation feed-forward network

Back-propagation is the most commonly used method for training multi-layer feed-forward networks. For most networks, the learning process is based on a suitable error function, which is then minimized with respect to the weights and bias. The algorithm for evaluating the derivative of the error function is known as back-propagation, because it propagates the errors backward through the network.

8. ANN Required Duty Cycle Model with its regression function

All the neural models in this section use the previous technique which used and verified before like in [22-34] for the author in the field of green energy. First, ANN PV module model is presented with its regression function which is verified before by the author [42]. This model uses the previous 3D graphs illustrated before as training or learning data for input and desired target. The inputs in this model are the Irradiance and
Temperature; the outputs are: Module Voltage, Current, and Power. This model with its hidden and output layers' suitable neurons numbers is depicted in figure 36. Also, the general neural network, and training state are presented in figures 37, and 38 respectively. This model would be used in some cases to help in predicting the required duty cycle as it will be seen.

\[G_n = (G - 0.6250) / (0.2797) \]
\[T_n = (T - 37.5000) / (27.9683) \]

Equations (41) and (42) present the normalized inputs for irradiance and temperature, also the following equations lead to the required derived outputs equations.

\[E1 = -0.3884G_n - 0.8968T_n + 2.8411 \]
\[F1 = 1/(1 + \exp(-E1)) \]
\[E2 = 10.8336G_n - 0.1120T_n - 4.7062 \]
\[F2 = 1/(1 + \exp(-E2)) \]
\[E3 = -0.3773G_n - 9.6071T_n + 7.2495 \]
\[F3 = 1/(1 + \exp(-E3)) \]
The normalized outputs are:

\[
V_n = 0.0466 F1 + 0.0080 F2 + 0.0661 F3 - 0.2311 F4 - 0.0071 F5 + 2.5608 F6 + 0.0771 \\
F7 + 0.0091 F8 - 0.0217 F9 - 2.7656
\]
(52)

\[
I_n = 6.2907 F1 + 1.5501 F2 + 0.2881 F3 + 1.8330 F4 - 1.1986 F5 - 0.6123 F6 - \\
1.2526 F7 + 1.6547 F8 - 2.6831 F9 - 6.1682
\]
(53)

\[
P_n = 7.2249 F1 + 1.7820 F2 + 1.0262 F3 + 5.1377 F4 - 1.3507 F5 - 0.9574 F6 + \\
3.4515 F7 + 1.8830 F8 - 6.9036 F9 - 7.3615
\]
(54)

The un-normalized outputs

\[
V = 25.2226 V_n + 42.6563
\]
(55)

\[
I = 2.1788 I_n + 2.3181
\]
(56)

\[
P = 57.5303 P_n + 81.4030
\]
(57)

Then, the first ANN model for predicting the required duty cycle for maximum power supply is presented as follow. The inputs in this model are the Irradiance and Temperature; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer for the resistive load matching. This model with its hidden and output layers’ suitable neurons numbers is well depicted in figure 39. Also, the general neural network, and training state are presented in figures 37, and 40 respectively.
The algebraic equation of this neural model is deduced as the following:

\[E_1 = -0.3590 G_n - 0.3814 T_n + 0.3804 \]
(58)

\[F_1 = \frac{1}{1 + \exp(-E_1)} \]

\[E_2 = -0.0141 G_n - 6.4507 T_n + 3.8184 \]
(59)

\[F_2 = \frac{1}{1 + \exp(-E_2)} \]

\[E_3 = -0.0351 G_n - 0.9089 T_n - 0.9329 \]
(60)

\[F_3 = \frac{1}{1 + \exp(-E_3)} \]

\[E_4 = 8.5133 G_n + 4.3558 T_n + 2.4202 \]
(61)

\[F_4 = \frac{1}{1 + \exp(-E_4)} \]

\[E_5 = 5.6139 G_n + 0.2623 T_n + 3.4972 \]
(62)

\[F_5 = \frac{1}{1 + \exp(-E_5)} \]

\[E_6 = -9.6390 G_n - 4.2841 T_n - 4.0081 \]
(63)

\[F_6 = \frac{1}{1 + \exp(-E_6)} \]

The normalized outputs are:

\[D_n = 0.6425 F_1 - 0.3052 F_2 - 1.8018 F_3 - 0.0027 F_4 - 0.1021 F_5 - 0.0181 F_6 + 0.4733 \]
(64)

The un-normalized outputs

\[D = 0.3087 D_n + 0.6542 \]
(65)

After that, the second ANN model for predicting the required duty cycle for maximum power supply is presented as follow. The inputs in this model are the module voltage and module current; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer for the resistive load matching. This model with its hidden and output layers’ suitable neurons numbers is well depicted in figure 41. Also, the general neural network, and training state are presented in figures 37, and 42 respectively.

![Figure 40. Training State](image)

![Figure 41. Duty cycle ANN Model](image)
The algebraic equation of this neural model is deduced as the following:
The normalized inputs V_n: (Normalized Voltage); I_n: (Normalized Current) are as follow:

$$ V_n = (V - 42.6563) / (25.2226) $$ \hspace{1cm} (66)

$$ I_n = (I - 2.1788) / (2.3181) $$ \hspace{1cm} (67)

Equations (66) and (67) present the normalized inputs for irradiance and temperature, also the following equations lead to the required derived outputs equations.

$$ E1 = 0.1708 \cdot V_n - 0.0757 \cdot I_n - 3.5535 $$ \hspace{1cm} (68)

$$ F1 = 1 / (1 + \exp(-E1)) $$

$$ E2 = -0.3229 \cdot V_n - 6.6072 \cdot I_n - 5.9777 $$ \hspace{1cm} (69)

$$ F2 = 1 / (1 + \exp(-E2)) $$

$$ E3 = 20.3367 \cdot V_n + 0.0538 \cdot I_n + 38.8185 $$ \hspace{1cm} (70)

$$ F3 = 1 / (1 + \exp(-E3)) $$

$$ E4 = -4.3491 \cdot V_n - 0.2479 \cdot I_n - 6.2840 $$ \hspace{1cm} (71)

$$ F4 = 1 / (1 + \exp(-E4)) $$

The normalized outputs are:

$$ D_n = 39.5715 \cdot F1 + 2.7944 \cdot F2 + 56.3549 \cdot F3 - 0.9435 \cdot F4 - 57.9687 $$ \hspace{1cm} (72)

The un-normalized out puts

$$ D = 0.3087 \cdot D_n + 0.6542 $$ \hspace{1cm} (73)

Finally, the third ANN model for predicting the required duty cycle for maximum power supply is presented as follow. The inputs in this model are the irradiance, temperature, module voltage and module current; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer for the resistive load matching. This model with its hidden and output layers’ suitable neurons numbers is well depicted in figure 43. Also, the general neural network, and training state are presented in figures 37, and 44 respectively.
The algebraic equation of this neural model is deduced as the following:
The normalized inputs G_n: (Normalized Irradiance); T_n: (Normalized Temperature); V_n: (Normalized Voltage); I_n: (Normalized Current) are as follow:

$$G_n = \frac{(G - 0.6250)}{(0.2797)}$$ \hspace{1cm} (74)

$$T_n = \frac{(T - 37.5000)}{(27.9683)}$$ \hspace{1cm} (75)

$$V_n = \frac{(V - 42.6563)}{(25.2226)}$$ \hspace{1cm} (76)

$$I_n = \frac{(I - 2.1788)}{(2.3181)}$$ \hspace{1cm} (77)

Equations (74), (75), (76) and (77) present the normalized inputs for irradiance, temperature, voltage, and current. The following equations lead to the required derived outputs equations.

$$E_1 = 0.5936 G_n - 0.0564 T_n + 1.2431 V_n - 0.6579 I_n + 4.8487$$ \hspace{1cm} (78)

$$F_1 = 1 / (1 + \exp (-E_1))$$

$$E_2 = 0.5943 G_n - 0.0479 T_n + 1.2037 V_n - 0.6658 I_n + 5.5987$$ \hspace{1cm} (79)

$$F_2 = 1 / (1 + \exp (-E_2))$$

$$E_3 = -1.5461 G_n + 9.1499 T_n + 12.5644 V_n + 4.8012 I_n - 7.1509$$ \hspace{1cm} (80)

$$F_3 = 1 / (1 + \exp (-E_3))$$

The normalized outputs are:

$$D_n = 1.0e+003 * (-0.5322 F_1 + 1.1651 F_2 + 0.0014 F_3) - 633.1165$$ \hspace{1cm} (81)

The un-normalized outputs are:

$$D = 0.3087 D_n + 0.6542$$ \hspace{1cm} (82)

9. Conclusion

This paper introduces Cuk DC-DC converter coupled to resistive load by maximum power from PV module. Relations which govern the process of load matching are discussed to give the required converter duty cycle at maximum power point (MPP). The simulation results are introduced by two ways first by 2D figures for the optimum resistive load values and for the predicted whole probable range of resistive loads to give a point of view about the intersection between them i.e. point of MPP. Second, the rest of the results are well depicted in the form of 3D figures for the PV module relations I-V with the various values of irradiance and temperature based on PV module data and the implemented MATLAB...
simulation model. Then, the relations of converter duty cycle, converter output voltage, and converter output current values to transfer the maximum power from the PV module to various values of resistive loads with variable values of temperature and irradiance. The neural network has the ability to deal with previous relations as surface or mapping face, due to this technique ability for interpolation between points with each other and also curves. This neural network unit is implemented, using the back propagation (BP) learning algorithm due to its benefits to have the ability to predict values in – between learning values, also make interpolation between learning curves data. This is done with suitable number of network layers and neurons at minimum error and precise manner. The ANN regression function for each unit is introduced to be used directly without operating the neural model each times. First, ANN PV module model is presented with its regression function, its inputs are the Irradiance and Temperature; the outputs are: Module Voltage, Current, and Power. Then, the first ANN model for predicting the required duty cycle for maximum power supply is introduced with its regression function, its inputs the Irradiance and Temperature; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer for the resistive load matching. After that, the second ANN model for predicting the required duty cycle for maximum power supply is illustrated with its regression function, its inputs are the module voltage and module current; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer for the resistive load matching. Finally, the third ANN model for predicting the required duty cycle for maximum power supply is proposed with its regression function, its inputs are the irradiance, temperature, module voltage and module current; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer for the resistive load matching.

References

[37] Masters, Gilbert M. Renewable and Efficient Electric Power Systems John Wiley & Sons Ltd, 2004

