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Fast and effective fault location in distribution system is important to improve the power system 
reliability. Most of the researches rarely mention about effective fault location consisting of 
faulted phase, fault type, faulty section and fault distance identification. This work presents a 
method using support vector machine to identify the faulted phase, fault type, faulty section and 
distance at the same time. Support vector classification and regression analysis are performed 
to locate fault. The method uses the voltage sag data during fault condition measured at the 
primary substation. The faulted phase and the fault type are identified using three-dimensional 
support vector classification. The possible faulty sections are identified by matching voltage sag 
at fault condition to the voltage sag in database and the possible sections are ranked using 
shortest distance principle. The fault distance for the possible faulty sections isthen identified 
using support vector regression analysis. The performance of the proposed method was tested on 
an unbalanced distribution system from SaskPower, Canada. The results show that the accuracy 
of the proposed method is satisfactory.... 
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1. Introduction 

 

Distribution systems supply electric power to customers and occupy an important role in 

power system. A survey in [1] shows that more than 80% of the interruption in distribution 

systems was caused by faults, which damaged the equipment and led to power outage to 

every customer on the system. This situation has forced electrical power utilities to provide 

high reliable and quality power supply [2]. Hence, to maintain continuous power supply to 

customers, faulty line has to be identified and isolated from the system. An effective fault 

location identification in distribution systems should be able to identify the faulted phase, 

fault type, faulty section and fault distance. Identification of faulted phase, fault type and 

faulty section further helps to know the most frequent type of fault occurred in particular 

system. Thus,proper maintenance can be taken to minimize its occurrence in the future. 

 

Various knowledge based algorithms have been used to identify fault such as the 

Artificial Neural Network (ANN) [3], Wavelet Transform (WT), Fuzzy Theory, Matching 

approach and Support Vector Machine (SVM). The method using voltage sag characteristic 

[4, 5] identifies the fault type by comparing the pattern of pre-fault voltage with the voltage 

during fault. However, for fault far from the measurement location, the different is not 
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noticeable and may lead to wrong identification of fault type. Fuzzy set wasproposed in [6-

8] and neural network in [9] for fault type classification.The methods such as in [10, 11] 

identify fault type for transmission systems using SVM. The method in [10] uses zero 

sequence and three phase currents to identify the faulted phase in transmission system. In 

[11], fault classification using principal component analysis and SVM is proposed. 

 

SVM wasused for faultclassification and sectionidentification in [12]. ANN 

wasproposed in [13], which uses voltage and current to classify Double Line to Ground 

Fault. The method in [13]identifiedthe fault type and faulty section. A combination of SVM 

and Wavelet transform was proposed in [14] for prediction of fault type and location. It 

uses voltage and current signals to locate fault in transmission system. Fault location with 

WT and wavelet packet transform (WPT) combining artificial neural network was proposed 

in [15]. A hybrid approach using wavelet transform and SVM was suggested in [16] for 

precise fault location in transmission lines. A method to identify faulty section and fault 

distance by using matching approach was proposed in [17, 18]. The method in [18] also 

ranks the possible section based on priority. The advantage of the method is that it can be 

used for any number of measurements in the network. SVM was used in [19] to identify the 

fault type, faulty section and distance together of faulted lines in a transmission system.  

 

Most of the previous fault location methods diagnose faults for transmission systems but 

not in unbalanced distribution systems. Different from transmission systems, distribution 

systems have more complex topological structures with multiple laterals. The methods 

focus on finding the fault type or the fault distance separately. None of the researches 

presents effective fault location identification by considering the faulted phase, fault type, 

faulty section and fault distance at the same time in an unbalanced distribution system. 

Considering this limitation, this work tends to identify faulted phase, fault type, faulty 

section and fault distance in a single method. The fault type itself includes the faulted phase 

which are Single Line to Ground Fault at phase a (SLGFa), Single Line to Ground Fault at 

phase b (SLGFb), Single Line to Ground Fault at phase c (SLGFc), Line to Line Fault at 

phase ab (LLFab), Line to Line Fault at phase bc (LLFbc), Line to Line Fault at phase ca 

(LLFca), Double Line to Ground Fault at phase ab (DLGFab), Double Line to Ground Fault 

at phase bc (DLGFbc), Double Line to Ground Fault at phase ca (DLGFca) and Three phase 

to ground fault at phase abc (LLLGFabc). 

 

 

The proposed method locates fault using three-dimensional (3D) analysis of SVM. The 

faulted phase and the fault type are identified using multiclass Support Vector 

Classification (SVC). The faulty section is identified by estimating fault resistance using 

Support Vector Regression (SVR). The possible sections are identified by matching the 

actual voltage sag with the simulated data and the most possible sections are ranked. 

Finally, the fault distance is estimated using SVR analysis. This manuscript is organized in 

5 sections. Section 2 describes the proposed methodology of the work. Section 3 presents 

the test system and section 4 gives the test results of the proposed method. Section 5 

concludes the finding of this work. 
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2. Proposed Methodology 

 

The proposed method utilizes voltage sag magnitude for 3 phases (phase a, b and c) to 

identify the fault in unbalanced distribution systems. It first identifies the fault type 

including faulted phase, then the faulty section and finally the fault distance. The 

illustration of proposed method is shown in Figure 1. 

 

),,( cba VVV

 
 

Figure 1: Illustration of the proposed method 

 

2.1. Database establishment 

 

The proposed method is implemented using SVM which requires a training set of 

voltage sag data for processing. The database establishment is illustrated in Figure 2. The 

steps involve are as follows: 

1. Single Line to Ground Fault at phase a (SLGFa) is simulated at all nodes of 

distribution system with 0Ω resistance 

2. Voltage sag magnitude at phase a, b and c are recorded from the measurement 

node 

3. The simulation is repeated for fault resistance of 20Ω, 40Ω and 60Ω resistance 

4. Steps 1 to 3 are repeated for other fault types of SLGFb, SLGFc, LLFab, LLFbc, 

LLFca, DLGFab, DLGFbc, DLGFca and LLLGFabc. 

 

)(xRf
)1( +xRf

)2( +xRf
)3( +xRf  

Figure 2: Training data establishment 
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2.2. Fault type identification 

The type of fault can be identified using ‘one versus all’ concept of multiclass SVC. The 

proposed method uses voltage sag data at fault (Vaf, Vbf and Vcf ) as input for SVC. The 

desired output is the type of the fault. Figure 3 describes the fault type classification using 

SVC. At each SVC, there are two possible inputs for classification, class 1 and class 0. At 

first, the voltage sag data of SLGFa is considered as class 1 and the remaining (SLGFb, 

SLGFc, LLFab, LLFbc, LLFca, DLGFab, DLGFbc, DLGFca and LLLGFabc) are considered as 

class 0. SVC finds the optimal hyper-plane between the two classes and identifies whether 

the input data falls in class 1 or class 0. If the fault type is identified under class 1, then the 

fault type is finalized as SLGFa. If the fault type is identified under class 0, then a second 

step of classification takes place by considering SLGFb as class 1 and the remaining 

(SLGFc, LLFab, LLFbc, LLFca, DLGFab, DLGFbc, DLGFca and LLLGFabc) as class 0. The 

process is continued until the actual fault type is identified. 

 

afV

bfV

cfV

 
Figure 3: Fault type identification using SVC 

 

2.3. Faulty section identification 

 

Once the fault type is identified, the faulty section is identified. Faulty section 

identification consists of fault resistance estimation, selection of possible sections and 

ranking analysis.  

 

2.3.1 Fault resistance estimation 

Fault resistance is estimated using SVR analysis. The voltage sag data from database is 

trained using radial basis function in SVR.  The voltage sag at fault conditions (Vaf, Vbf and 

Vcf ) are assigned as the input to SVR. The corresponding output ( est

fR ) is the estimated 

fault resistance.  The illustration of the fault resistance estimation is depicted in Figure 4.  

afV

cfV

est

fR
bfV

 
Figure 4: Fault resistance estimation using SVR 
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2.3.2 Selection of possible sections 

 

Once the fault resistance is estimated, the possible faulty sections are identified by 

comparing the voltage sag magnitude in database with the actual voltage sag magnitude 

[17, 20].   The fault resistance from the database are selected such that, 

)1()( +<< xRRxR f

est

ff
       (1) 

where of )(xR f
 and )1( +xR f

 are the resistance from database for which the voltage sag is 

simulated. 

The voltage sag data for each section from )(xR f
 and )1( +xR f

 are analysed 

individually. For example, a faulty section s between nodes i and j are considered.  The 

voltage sag magnitudes with a fault resistance between )(xR f
 and )1( +xR f

are shown in 

Table 1. 

 

Table 1: Voltage sag data for section identification 

 

Node Fault resistance in database 
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Figure 5 showsthe search boundary of section s at resistance values, )(xR f
 and 

)1( +xRf
 in 3D. ),,( cfbfaf VVV correspondingto the measured voltage sag magnitude at 

phase a, b and c at fault condition. It can be seen that the measured voltage sag is not within 

the search boundary. To address this problem, the minimum and maximum voltage sag 

profiles of two adjacent fault resistances are considered. 
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Figure 5: Voltage sag profile variation for section s and two different resistances 
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The minimum and maximum voltage sags of the section s are noted down. If the voltage 

sag at fault lies between minimum and maximum of the section from database, the 

corresponding section is chosen as the faulty section [17]. 
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2.3.3 Ranking Analysis 

 

Multiple faulty sections are possible in distribution system due to the presence of lateral 

branches and sub-branches. Hence the most possible faulty section is ranked using the 

similar concept of shortest distance principle [18]. The shortest distance sd  is calculated 

between the fault point and the linear line joining voltage sag from database. The faulty 

section, which yields the shortest distance among all possible faulty section has a high 

priority of the most possible faulty section. Figure 6 shows two possible faulty sections s 

(nodes i-j) and m(nodes p-q). 
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the minimum and maximum values of voltage sag at section s. 
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section m. ),,( cfbfaf VVV  represents the voltage sag data identified during the fault. 
1sd  and 

2sd represent the shortest distance between the fault point and the line joining minimum and 

maximum values of sections s and m. 
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Figure 6: Ranking analysis 

 

The shortest distance 
1sd  for a section s is calculated using  
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where { }zyx SSSS ,,=  is the directing vector of line joining 
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{ }zyx NNNN ,,=  is the directing vector of line joining 
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{ }zyx MMMM ,,= is the cross product of vectors N  and s.  

  

    

2.4. Fault Distance estimation 

 

Fault distance is identified using SVR analysis. For the possible faulty sections, the 

voltage sag data at nodes from the database (Table 1) is trained using SVR to estimate the 

fault distance. The training input and output for section s is shown in Table 2. Here, l  

represents the length of the line section. 

 

Table 2: Training data for fault distance calculation 

 

Input training data Output training data 
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The illustration for fault distance estimation is shown in Figure 7. The voltage sag data 

during the fault ),,( cfbfaf VVV and the estimated fault resistance 
est

fR  are assigned as 

input to SVR. The corresponding output is the fault distance df . 

bfV

afV

est

fR

df

cfV

 
Figure 7: Fault distance estimation 

 

 

3. Test System 

The SaskPower network is a radial distribution network consisting of unbalanced lines 

and unbalanced loads. The schematic diagram of test distribution system is shown in Figure 

8. The system consists of a 25kV equivalent source, single phase laterals, three phase 
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laterals and 20 line sections made up of different conductor. A node number is indicated 

along the line of the test system. The parameters of equivalent source, line data and the load 

data can be obtained from [17, 21, 22]. 

The distribution system is modelled using PSCAD power system simulation software. 

The cables are modelled as constant impedance load using PI model. The voltage sag data 

is recorded in measurement node nearer to node 1 of distribution system. The voltage sag 

database is created by simulating fault at all nodes of the distribution system. The 

performance of algorithm is tested for various fault types such as SLGFa, SLGFb, SLGFc, 

LLFab, LLFbc, LLFca, DLGFab, DLGFbc, DLGFca and LLLGFabc and for various resistances 

of 0Ω, 10Ω, 30Ω and 50Ω. The measured voltage sag data at the fault is analysed using a 

MATLAB programming code. 

 
 

Figure 8: Schematic diagram of SaskPower Distribution system 

 

4. Test Results 

 

For training purpose, simulations were performed for fault at the nodes of the 

distribution system at 0Ω, 20Ω, 40Ω and 60Ω resistance. A total of 840*3 voltage sag data 

are utilized for training using SVM. For testing purpose, faults at the middle of the line 

section at 0Ω, 10Ω, 30Ω and 50Ω resistance.  

 

4.1. Fault type classification 

 

The proposed method is tested for ten fault types (SLGFa, SLGFb, SLGFc, LLFab, LLFbc, 

LLFca, DLGFab, DLGFbc, DLGFca and LLLGFabc). The subscript in the fault type represents 

the faulted phase. The fault type and the faulted phase are identified using 3D multiclass 

SVC. SVC is trained with 840 voltage samples using radial basis function (RBF) for 

classification of 10 output. The support vectors identified using SVC during fault type 

classification are tabulated in Table 3. 

 



S. Shilpa Gururajapathy et al: Fault Identification in an Unbalanced Distribution System Using SVM 

 

 794 

Table 3: Support vectors of SVC 

 

Types of fault Class 1 Class 0 Identified 

Support vectors 

SLGFa 84 756 144 

SLGFb 84 672 137 

SLGFc 84 588 128 

LLFab 84 504 82 

LLFbc 84 420 81 

LLFca 84 336 80 

DLGFab 84 252 56 

DLGFbc 84 168 49 

DLGFca and LLLGFabc 84 84 43 

 

 

The hyper plane obtained for fault type classification is shown in Figure 9(a) to Figure 

9(i). Figure 9(a) gives the total of 840 voltage sag data and 3D non-linear hyperplane 

identified for SLGFa. Class 1 represents the data of SLGFa and the remaining (SLGFb, 

SLGFc, LLFab, LLFbc, LLFca, DLGFab, DLGFbc, DLGFca and LLLGFabc) as Class 0. The x-

axis represents the voltage at phase a, y-axis represents the voltage at phase b and z-axis 

represents the voltage at phase c. If the fault type is not SLGFa then further classification is 

carried out by considering SLGFb as class 1 as given in Figure 9(b). Similarly the 

hyperplane for classification of fault types SLGFc, LLFab, LLFbc, LLFca, DLGFab, DLGFbc, 

DLGFca and LLLGFabc are shown in Figure 9(c) to Figure 9(i) 

 

 

  
9(a) 3D hyper plane for SLGFa 9(b) 3D hyper plane for SLGFb 
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9(c) 3D hyper plane for SLGFc 9(d) 3D hyper plane for LLFab 

 

 

 

  
9(e) 3D hyper plane for LLFbc 9(f) 3D hyper plane for LLFca 

 

 

 

  
9(g) 3D hyper plane for DLGFab 9(h) 3D hyper plane for DLGFbc 



S. Shilpa Gururajapathy et al: Fault Identification in an Unbalanced Distribution System Using SVM 

 

 796 

 
9(i) 3D hyper plane for DLGFca and LLLGFabc 

 

Figure 9: 3D classification using SVC 

 

4.2. Faulty section 

 

The test results of possible faulty sections and rank of the correct section at 0Ω 

resistance is illustrated in Table 4. For analysis, the test sections  1-2 and 7-8 nodes (Main 

at feeder), 13-14 nodes (Branch at feeder), 18-20 nodes (Sub branch at feeder) are 

considered. From the results, it can be noted that single faulty sections were selected for test 

sections 1-2 and 7-8 for all types of fault. This is because, from node 1 to node 2 and node 

7 to node 8 is completely a radial line and there are no parallel line sections. Also the rank 

identified for the fault type of SLGFa, SLGFb and SLGFc; LLFab, LLFbc and LLFca; 

DLGFab, DLGFbc and DLGFca are the same. This is due to only the faulted phase is 

interchanged. 

 

Table 4: Faulty sections and rank of the correct section at0Ω resistance 

 

Section 

Number 

Test 

Section 

Selected Faulty 

Section 

Rank Number of the Actual Faulty Section 

SLGFa/ 

SLGFb/ 

SLGFc 

LLFab/ 

LLFbc/ 

LLFca 

DLGFab/ 

DLGFbc/ 

DLGFca 

LLLGFabc 

1 1-2 1-2 1 1 1 1 

7 7-8 7-8 1 1 1 1 

13 13-14 
13-14, 13-15, 18-19, 

18-20 
1 1 1 1 

19 18-20 
13-14, 13-15, 18-19, 

18-20 
2 3 3 2 

 

The test results of faulty section are also analysed for various other fault resistances of 

10Ω, 30Ω and 50Ω. The calculated fault resistance and the ranking using shortest distance 

principle for test section 1-2, 7-8, 13-14 and 18-20 nodes are tabulated in Table 5. It can be 

noted that the calculated fault resistance is closer to the actual resistance.  
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Table 5: Fault resistance and ranking of the faulty sections 

 

Faul

ty 

secti

on 

Actual 

fault 

resistance 

SLGFa, SLGFb, 

SLGFc 

LLFab, LLFbc, 

LLFca 

DLGFab, DLGFbc, 

DLGFca 
LLLGFabc 

Calculated 

resistance 

(Ω) 

Rank 

Calculate

d  

resistance 

(Ω) 

Rank 

Calculated  

resistance 

(Ω) 

Rank 

Calculat

ed  

resistanc

e (Ω) 

Rank 

1-2 

10 10.487 1 13.399 1 9.152 1 10.983 1 

30 30.386 1 31.767 1 28.044 2 27.782 1 

50 51.875 1 52.799 1 50.802 1 47.828 1 

7-8 

10 11.629 2 9.0094 1 11.579 2 11.959 1 

30 29.362 1 32.011 2 28.277 4 28.040 1 

50 53.888 3 50.617 3 46.724 1 48.456 2 

13-

14 

10 11.269 1 13.571 2 9.038 1 11.272 3 

30 29.683 3 30.791 5 32.550 4 33.701 2 

50 46.712 3 49.886 6 48.093 2 51.218 2 

18-

20 

10 12.085 1 13.581 2 9.970 4 12.751 2 

30 30.073 1 27.074 1 29.684 1 28.390 4 

50 48.904 5 48.820 2 49.694 4 51.566 1 

 

The overall ranking performance of the proposed method is shown in Figure 10. The x-

axis represents the rank and y-axis represents the number of possible candidate identified in 

the ranking. The test cases are repeated for resistances of 0Ω, 10Ω, 30Ω and 50Ω for fault 

at the midpoint of all 20 line sections. It shows that most of the possible faulty sections are 

found correctly at the first and second ranks for mid-point tests at all test sections. For 0Ω 

resistance, 14 faulty sections are correctly identified in the first rank for LLF, 15 sections 

for SLGF and DLGF and 18 sections for LLLGF. The faulty section performances of LLF 

(2 sections) and DLGF (1 section) have rankings, up to the third rank. For other fault 

resistances of 10Ω, 30Ω and 50Ω, the result shows that all of the sections can be 

determined within first six ranks. 

10(a) SLGFa, SLGFb, SLGFc 10(b) LLFab, LLFbc, LLFca 
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10(c) DLGFab, DLGFbc, DLGFca 10(d) LLLGFabc 

Figure 10: Overall ranking performance 

 

4.3. Fault distance calculation 

The fault distance isanalysed using SaskPower distribution network for fault at the 

midpoint of all line section. Figure 11 shows the percentage error of calculated fault 

distance for SLGFat resistances of 0Ω, 10Ω, 30Ω and 50Ω. The test results of fault distance 

for SLGFa, SLGFb and SLGFc are the same because the voltage sag at phase a, phase b and 

phase c are just interchanged. A maximum percentageerror of 24.7% isobtained in SLGF 

(section 1-2)at a faultresistance of 10Ω. 

 
Figure 11: Calculated fault distance for SLGFa/ SLGFb/ SLGFc 

The percentageerror for LLFab, LLFbc and LLFcaat resistances of 0Ω, 10Ω, 30Ω and 

50Ωisshown in Figure 12. A maximum percentageerror of 11.3% isobtained in test section 

1-2 at10Ωresistance. All other test sections havelowerpercentageerror. 

 
Figure 12: Calculated fault distance for LLFab/ LLFbc/ LLFca 
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The percentageerror of fault distance for DLGFab, DLGFbc and DLGFcaat resistances of 

0Ω, 10Ω, 30Ω and 50Ωisshown in Figure 13. A maximum of 23% isidentified in test 

section 1-2 at 10Ω resistance. 

 

 
Figure 13: Calculated fault distance for DLGFab/ DLGFbc/ DLGFca 

Figure 14 gives the percentage error of LLLGFabc .A maximum percentage error of 30% 

is obtained at 10 Ω resistance (at section 1-2) for LLLGFabc. In this, the deviation from the 

actual fault distance is 362 meters which is a small distance compared to the whole 

distribution system. The percentage error of fault distance at other resistance of 0 Ω, 30 Ω 

and 50 Ω are less than 30% error. Therefore, the proposed method has managed to identify 

the fault distance with greater accuracy. 

 
Figure 14: Calculated fault distance for LLLGFabc 

 

 

5. Conclusions 
 

An approach using three-dimensional support vector classification and regression 

analysis for locating fault has been successfully proposed in this work. The fault type and 

the faulted phase are identified using SVC. The method classifies all 10 types of faults by 

identifying the hyper plane between classes. The faulty section was identified by using 

matching approach and ranking the most possible faulty section. The possible faulty section 

was ranked using three-dimensional shortest distance principle. The proposed work shows 

that the faulty sections were identified within first six ranking and all of the faulty sections 

can be ranked. Also, fault distances for the possible faulty sections were identified using 

SVR analysis. A maximum error of 30% was obtained in the test cases. Therefore, the 

proposed method has the potential to be used to identify the faulted phase, fault type, faulty 

section and fault distance for various fault resistances. 
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