Ouafa Herbadji¹, Linda Slimani¹, Tarek Bouktir^{1,2}

Regular paper

Solving Bi-Objective Optimal Power Flow using Hybrid method of Biogeography-Based Optimization and Differential Evolution Algorithm: A case study of the Algerian Electrical Network

This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO) algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE) is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.

Keyword: Optimal power flow, Hybrid BBO/DE algorithm, Biogeography-based optimization (BBO), Differential evolution (DE), Pollution Control, Algerian electrical network.

Article history: Received 3 September 2015, Accepted 1 February 2016

1. Introduction

The optimal power flow (OPF) problem is important tools in operation and control of large modern power systems based FACTS technology and Renewable energy, it was first discussed by Carpentier in 1962[1], the main purpose of OPF is to find the optimal solution to an objective function subject to the power flow constraints and other operational constraints, such as generator minimum output constraints, transmission stability and voltage constraints, and limits on switching mechanical equipment.

The environment (gaz emissions) can be considered as part of electric system planning [2]. That is, minimization of pollution emission. Oxides of nitrogen NOX emissions will be considered in the OPF problem for environmental protection. Power production from fossil burning and energy use may bring about significant adverse environmental effects through NOX emissions. So the total emission in the objective function will be considered in the OPF problem [3].

^{*} Corresponding author: O. Herbadji, E-mail: herbadji.wafa@yahoo.com

¹Departement of Electrical Engineering, University of Ferhat Abbas, Sétif 1, Algeria

² Laboratory LSEI, University of Sciences and Technology of Algiers USTHB , Algeria

Biogeography-based optimization (BBO) is new stochastic evolutionary algorithm developed by Dan Simon in 2008 [4]. It based on the theory of island biogeography, which is the study of the geographical distribution of biological organisms. It's similar to genetic algorithms (GA). BBO searches for the global optimum mainly through two mechanisms: Migration and Mutation.

Differential evolution (DE) is one of the best and very fast evolutionary algorithms for global optimization, invented by Price and Storn in 1995 [5]. DE technique is a technically simple, population based evolutionary algorithm for minimizing non-linear and multi-modal objective functions. It using three basic operations, namely: mutation, crossover, and selection operators.

This paper presents a hybridization of a biogeography-based optimization algorithm with another stochastic optimization algorithm named differential evolution for solving the optimal power flow problem with pollution control. The proposed method is tested on IEEE 30-bus system [6] and the Algerian electrical network 114-bus [7]. The simulation results of BBO/DE algorithm are compared to the results of biogeography-based optimization algorithm BBO [8] and the differential evolution DE [7].

This paper is organized as follows; Section 2 present the problem formulation. Section 3 gives a brief description of BBO and DE algorithm, the application of BBO/DE into optimal power flow is also described in this section. In section 4, the simulation results and discussions are presented. Finally, conclusion is stated in Section5.

2. Problem Formulation A. Formulation of OPF

The standard OPF problem can be written in the following from:

 $\begin{array}{ll} \mbox{Minimize } \left(F(x)\right) & (\mbox{the objective function}) & (1) \\ \mbox{Subject to: } g(x) = 0 & (\mbox{the equality constraints}) & (2) \\ h(x) \leq 0 & (\mbox{the inequality constraints}) & (3) \\ \mbox{Where } x \mbox{ is the vector of control variables, It can be generated active power } P_g, \mbox{ generation} \\ \mbox{bus magnitudesV}_g, \mbox{ and transformers tap setting } T \hdots etc. \\ x = \left[P_g, V_g, T \hdots \right] & (4) \\ \end{array}$

B. Objectives functions

In this paper, OPF is formulated with two objective functions as follows:

• Minimization of cost of generation

The OPF problem can be expressed as minimizing the cost of production of the real power which is given by a quadratic function of generator power output P_{g_i} as [9,10].

$$F(x) = \sum_{i=1}^{ng} (A_i + B_i P_{Gi} + C_i P_{Gi}^2)$$
(5)

Where: F is The fuel cost function, A_i, B_i, C_i are the fuel cost coefficients, i represent the corresponding generator (1,2,....ng), P_{G_i} is the generated active power at bus I and ng is number of generators including the slack bus.

Minimization of polluted gas emission

The objective function that minimizes the total emissions (NOx emission) can be expressed as [11,12]:

Minimize (F_E)

$$F_E(x) = \sum_{i=1}^{ng} (a_i + b_i P_{Gi} + c_i P_{Gi}^2 + d_i \exp(e_i P_{Gi}))$$
(6)

Where a_i, b_i, c_i, d_i and e_i are the parameters estimated on the basis of unit emissions test results.

The total objective function is described by [13]:

$$F_{tot}(x) = \alpha F + w(1 - \alpha)F_E \quad [\$/h \tag{7}$$

Where α is a weighting satisfies $(0 \le \alpha \le 1)$ and w is the emission control cost factor [10].

C. OPF constraints

The constraints of the OPF problem can be split into two parts: The equality and inequality constraint:

The equality constraints reflect the physics of the power system, equality constraints g(x)are the real and reactive power balance equations.

$$P_{g_{i}} - P_{d_{i}} = V_{i} \sum_{\substack{j=1\\N}}^{N} V_{j} \left(g_{ij} \cos \delta_{ij} + z_{ij} \sin \delta_{ij} \right)$$
(8)

$$Q_{g_i} - Q_{d_i} = V_i \sum_{j=1}^{N} V_j \left(g_{ij} \sin \delta_{ij} + z_{ij} \cos \delta_{ij} \right)$$
(9)

Where P_{g_i}, Q_{g_i} are the active and the reactive power generation at bus i; P_{d_i}, Q_{d_i} are the real and the reactive power demand at bus i, V_i, V_j the voltage magnitude at bus i, j, respectively; g_{ij} , z_{ij} are the real and imaginary part of the admittance (*Yij*); δij is the phase angle difference between buses *i* and *j* respectively and *N* is the total number of buses.

The inequality constraints reflect the limits on physical devices in the power system as well as the limits created to ensure system security that they are presented in the following inequalities:

- (10)
- (11)
- $\begin{array}{ll} \text{Limits on active power at generator buses:} & P_{g_i}^{\min} \leq P_{g_i} \leq P_{g_i}^{\max} \\ \text{Limits on reactive power at generator buses:} & Q_{g_i}^{\min} \leq Q_{g_i} \leq Q_{g_i}^{\max} \\ \text{Limits on voltage magnitude of at the all buses:} & V_i^{\min} \leq V_i \leq V_i^{\max} \\ \text{Limits on tap positions of a transformer :} & T^{\min} \leq T \leq T^{\max} \end{array}$ (12)
- (13)(14)
- $$\begin{split} \theta_i^{\ min} &\leq \theta_i \leq \theta_i^{\ max} \\ S_{li}^{\ min} &\leq S_{li} \leq S_{li}^{max} \end{split}$$
 Limits on the bus voltage phase angles:
- Limits on transmission lines loading : (15)

3. BBO/DE for optimal power flow

1. Biogeography based optimization (BBO)

The biogeography-based optimization algorithm a new bio-inspired optimization technique developed by Dan Simon in 2008[4], is strongly influence by the equilibrium theory of island biogeography [14]. The basic premise of this theory is that the rate of change in the number of species on an island depends critically on the balance between the immigration of new species onto the island and the emigration of species from the island. Island in BBO is defined as any habitat that is isolated geographically from other habitats. Well suited habitats for species are said to have high habitat suitability index (HSI) while habitats that are not well suited said to have low HSI. Each habitat consists of features that decide the HSI for the habitat. These features are considered as independent variable and called suitability index variables (SIV) which map the value of the HSI of the habitat. High HSI habitats have large number of species while low HSI habitats have small number of species [15].

The immigration rate λ and the emigration μ rate are functions of the number of species in the habitat and a good solution has higher μ and lower λ (Figure.1)

Figure.1 Species model of a single habitat

The immigration and emigration rate when there are S species in the habitat is given by:

$$\lambda_k = I\left(1 - \frac{k}{n}\right) \tag{16}$$

$$\mu_k = E\left(\frac{k}{n}\right) \tag{17}$$

Where I: is the maximum possible immigration rate. E is the maximum possible emigration rate. k is the number of species of the kth individual in the ordered population according to the fitness.

There are two main operators, the migration and the mutation. One option for implementing the migration operator can be described as follow

for i=1 to NP do
Select X_i with probability λ_i
if rndreal $(0,1) < \lambda_i$ then
for <i>j</i> = 1 to <i>NP</i> do
Select X_j with probability μ_j
if rndreal $(0,1) < \mu_j$ then
Randomly select a variable σ from X_j
Replace the corresponding variable in X_i with σ
end if
end for
end if
end for

where; the	e population	consists of	of NP	= <i>n</i> parameter	vectors.	rndreal	(0,1) is a	uniformly
distributed	l random rea	l number i	n (0,1)	and $Xi(j)$ is th	e jth SIV	of the se	olution Xi	

In BBO the mutation is modeled as SIV mutation using species count probabilities to determine mutation rate. Very high HSI and very low HSI solutions are likely to be mutated to a different solution using the mutation rate m that is calculated using

$$m(s) = m_{max} \left(1 - \frac{P_s}{P_{max}} \right)$$
(18)

Habitat migration

Where m(s) is the mutation rate, m_{max} is the maximum mutation rate, Ps is the probability that S species in a habitat, and P_{max} is the maximum probability that S species in a habitat. When a solution is selected for mutation then we replace a randomly chosen SIV in the habitat with a new randomly generated SIV [16].

• Algorithm of BBO applied to OPF

In the optimal power flow problem each habitat represent a candidate solution consist of SIVs. Each SIV represents the output power generated by a generation unit.

1. Initialize BBO parameters.

2. Generate a random set of habitats that consists of SIVs representing possible solutions.

3. Calculate HIS and their rates μ and λ for all habitats.

4. Identify and save the best solutions based on the HSI value.

5. Modify the non elite habitat using the migration process.

6. Modify the non-elite habitat by probabilistic mutation operation based on mutation rate then go to step (3).

7. After specified number of generation this loop is finished.

2. DE algorithm

Differential Evolution (DE) is a stochastic algorithm, which has been used in many optimization problems due to its simplicity and efficiency. DE is , invented to solve the global optimization by Storn and Price in 1995 [5].

DE technique is a technically simple, population based evolutionary algorithm for minimizing non-linear and multi-modal objective functions. It using three basic operations, namely: mutation, crossover, and selection operators (figure 2).

Figure. 2 DE cycle of stage

• Initialization

The population is initialized by randomly generating individuals (equation (19))[17].

$$X_{ij}^{0} = X_{j}^{min} + rand * (X_{j}^{max} - X_{j}^{min}) \qquad i = 1, 2, \dots Np \qquad \& \qquad j = 1, 2, \dots D$$
(19)

Where ; the *j*th variable of the given problem has its lower X_j^{min} and upper X_j^{max} bound. Np is the size of the population and D is the number of decision variables.

Mutation

The mutation operator of DE occupies quite an important function in the reproduction cycle. This operation creates mutant vectors X_i^k by perturbing a randomly selected vector X_a^k with the difference of two other randomly selected vectors X_b^k and X_c^k at the th iteration equation (20) [18]

$$X_i^{\prime k} = X_a^k + Fx * \left(X_b^k - X_c^k\right) \qquad i = 1, 2, \dots Np$$
(20)

Where ; F is the scaling factor, it used to control the amount of perturbation in the process $(F \in [0 2])$,

• Crossover

Based on the mutant vector, the parent vector is mixed with the mutated vector to create a trial vector, which is used in the selection process according to the following equation:

$$X_{ij}^{"k} = \begin{cases} X_{ij}^{"k} & \text{if rand } j < Cr \text{ or } j = randn \\ X_{ij}^{k} & \text{otherwise,} \end{cases}$$
(21)

Where, $i = 1, 2, 3, ..., Np; j = 1, ..., D. X_{ij}^k, X_{ij}^k$ and $X_{ij}^{"k}$ are jth individual of ith target vector, mutant vector, and trial vector at kth iteration respectively. Cr e [0, 1] is the Crossover constant [19].

Selection

Selection process is used among the set of trial vector and the updated target vector to choose the best. At last the fitness of the vector X_i^k and X_i^{k+1} is compared, and the best is chosen to generate offspring through greedy selection, that is:

$$X_{i}^{k+1} = \begin{cases} X_{i}^{''k} \ iff(X_{i}^{''k}) \le f(X_{i}^{''k}) \\ X_{i}^{k} \ otherwise, \end{cases}$$
 i=1,2,... Np (22)

The selection operator is repeated for both pair of target/trial vector until the new population is completed. The pseudo-code of the DE algorithm is shown as [18] :

The Pseudo-code of the DE algorithm

1: Generate the initial population P 2: Evaluate the fitness for each individual in P 3: while The termination criterion is not satisfied 4: for i = 1 to NP 5: Select uniform randomly $r_1 \neq r_2 \neq r_3 \neq i$ 6: $j_{rand} = randint(1, D)$ 7: for j = l to D do 8: if randj (0, 1) > CR or $j == j_{rand}$ $U_{i}(j) = X_{r_{1}}(j) + F(X_{r_{2}}(j) - X_{r_{3}}(j))$ 9: 10: else 11: $U_i(j) = X_i(j)$ 12: end 13: end 14: end 15: for *i* = *1* to *NP* 16: Evaluate the offspring U_i 17: if U_i is better than P_i 18: $P_i = U_i$ 19: end 20: end 21: end

Algorithm of DE applied to OPF

 Representation of the problem variables: In the economic dispatch problem each vector in the DE population represent a candidate solution. The vector of that solution consist of all the optimization variables of the problem. For the case of minimization of cost the output power generated by a generation unit are the optimization variables. Formation of the evaluation function : Differential evolution searches for the optimal solution by maximize the fitness function, and for that reason an evaluation function which provides a determine of the quality of the problem solution must be provided., The objective is to minimize the total cost while satisfying all equality constraints by running the Newton Raphson power flow algorithm and inequality constraints by adding a quadratic penalty function to the objective function.

3. Hybrid BBO-DE

The BBO algorithm, without hybridization, does not have much diversity in local or sub optimal solutions. In BBO-DE, a hybrid migration operator of BBO is applied along with operators of DE which combines the searching of DE with the operation of BBO effectively to speed up the convergence property and to find better quality results. The structure of the BBO-DE algorithm is very simple and almost same to original BBO algorithm with small changes due to mutation operator of DE. Complete BBO-DE process is shown as :

Algorithm : The main procedure of BBO/DE

- **1.** Generate the initial population P
- 2. Evaluate the fitness for each individual in P
- 3. While the halting criterion is not satisfied do
- 4. for each individual, map the fitness to the number of species
- 5. calculate the immigration rate λ_i and the emigration rate μ_i for each individual
- X_i 6.
- Modify the population with the hybrid migration operator shown in offspring
- Ui

9.

7. for i = 1 to NP

```
Select uniform randomly r_1 \neq r_2 \neq r_3 \neq i
          j_{rand} = randint(1, D)
          for j = l to D do
            if randj (0, 1) < CR or j == j_{rand}
                U_i(j) = X_{r_1}(j) + F(X_{r_2}(j) - X_{r_3}(j))
           else
                U_i(j) = X_i(j)
           end
        end
8. Evaluate the offspring
          if U_i is better than P_i then
10.
             P_i = U_i
11.
         endif
12.
      end for
13. end while
```

4. **Application Study**

The OPF with emission control using Hybrid BBO-DE has been developed and implemented by the use of Matlab 9. The applicability and validity of this method have been tested on IEEE 30-bus system and Algerian network (114-bus).

A. Application on the IEEE 30-bus system

The IEEE 30-bus system consists of 6 generators at n° :1, 2, 5, 8, 11 and 13, 41 transmission lines and 4 transformers between buses (6-9), (6-10), (4-12) and (28-27) (Figure 3).

Figure. 3 Topology of the IEEE 30-Bus electrical network

The active power generating limits and the unit costs of all generators of the IEEE 30-bus test system are presented in Table 1 [13], and the pollution coefficients of generators are presented in Table 2 [20]. The emission control cost factor for this system was taken as 550.66 \$/Ton [21] and the total active load in the system was 283.4 MW.

Upper and lower magnitude voltage limits are set as: $0.95 \le V \le 1.1$ pu. Upper and lower bounds on the bus voltage phase angles $-14 \le \theta_i \le 0^\circ$ Upper and lower transformer tap setting T limits are set as: $0.9 \le T \le 1.1$ pu.

The BBO-DE parameters are set as:

- Population size NP : 100.
- Maximum number of generations Gmax : 200.
- Mutation probability: 0.01.
- Maximum immigration rate: I = 1.
- Maximum emigration rate: E = 1.
- Crossover constant CR : 0.9.
- Weighting factor F: 0.5.

bus	Pg _{i(min)}	Pg _{i(max)}	A_i	$B_i . 10^{-2}$	$C_i . 10^{-4}$
	(MW)	(MW)	(\$/h)	(\$/MWh)	$(\%/MW^2h)$
1	50	200	0.00	200	37.5
2	20	80	0.00	175	175.0
5	15	50	0.00	100	625.0
8	10	35	0.00	325	83.0
11	10	30	0.00	300	250.0
13	12	40	0.00	300	250.0

Table 1. Power generation limits and cost coefficients for IEEE 30-bus system

bus	a.10 ⁻² (Ton/h)	b.10 ⁻⁴ (Ton/ MWh)	c.10 ⁻⁶ (Ton/ MW ² h)	d.10 ⁻⁴ (Ton/ MWh)	e.10 ⁻² (Ton/MWh)
1	4.091	-5.554	6.490	2.00	2.857
2	2.543	-6.047	5.638	5.00	3.333
5	4.258	-5.094	4.586	0.01	8.000
8	5.326	-3.550	3.380	20.00	2.000
11	4.258	-5.094	4.586	0.01	8.000
13	6.131	-5.555	5.151	10.00	6.667

Table 2. Emission coefficients for IEEE 30-bus system

To demonstrate the effectiveness of the proposed approach (BBO/DE-OPF) two cases to be discussed:

Case A: the vector of control variables include only the generated active powers;

$$x = [P_{g_i}] \tag{23}$$

Case B: the vector of control variables include the generated active powers, magnitude voltages of generators and transformer tap settings.

$$x = [P_{g_2}, P_{g_5}, P_{g_8}, P_{g_{11}}, P_{g_{13}}, V_1, V_2, V_5, V_8, V_{11}, V_{13}, T_{6-9}, T_{6-10}, T_{4-12}, T_{28-27}]$$
(24)

Case A: The results of the case 1 including the generation cost, generated active power and the power losses are shown in Table 3.

	Min	BBO-OPF	DE-OPF	BBO/DE-OPF	Max
Pg1 [MW]	50	176.611	176.786	176.7467	200
Pg2 [MW]	20	48.624	48.841	48.8509	80
Pg5 [MW]	15	21.523	21.527	21.5256	50
Pg8 [MW]	10	21.825	21.749	21.7620	35
Pg11 [MW]	10	12.170	12.140	12.1552	30
Pg13 [MW]	12	12.271	12.000	12.0000	40
Ploss [MW]	-	9.624	9.643	9.6405	-
Cost [\$/hr]		802.721	802.704	802.6765	-
Time [s]	-				-

Table 3. Results of minimum fuel cost for IEEE 30-bus system

Figure 4. The convergence of fuel cost for IEEE 30-bus system

From Table 3, We can observe that the hybrid BBO/DE give an acceptable solution (802.6765 compared with 802.721 and 802.704) (\$/h) and it is best than BBO and DE in solving the optimal power flow. The active powers of the 6 generators as shown in this table are in their limits.

Figure 4 shows the convergence for the best solutions of the minimum fuel cost. It can be seen that the convergence of BBO/DE is fast than BBO and DE, for example at the iteration 47 the fuel cost by BBO/DE-OPF (802,684 \$/h) is lower than those obtained by BBO (802,764 \$/h) and DE methods (802,776 \$/h).

Case B: The results including the generation cost, the emission level, total cost, generated active power, magnitude voltage, power losses and transformer tap settings are shown in Table 4.

The table 4 gives the optimum generations for minimum total cost in three cases:

- Alpha = 1: Minimum generation cost
- Alpha = 0.5: Equal influence of generation cost and the emission level in the objective function.
- Alpha = 0: Minimum emission is taken as the objective function.

From the results seen in Tables 4, it's clear that the BBO-DE/OPF method can obtain more important results of fuel cost and lower emission level than the other methods for example in case :1 the generation cost of BBO/DE-OPF is (799.741 \$/hr) with real power loss (8.813 MW and emission level (0.368 Ton/hr) compared with the results obtained with BBO/OPF method (800.045 \$/hr, 8.901 MW and 0.368 Ton/hr) and with DE-OPF (799.744 \$/hr, 8.914 MW and 0.368 Ton/hr).

		Alpha=1		Alpha=0,5			
	BBO-	DE-OPF	BBO/DE-	BBO-	DE-OPF	BBO/DE-	
	OPF		OPF	OPF		OPF	
Pg1 (MW)	177.075	176.908	177.016	129.670	130.100	130.269	
Pg2 (MW)	48.641	48.762	48.714	56.954	57.076	56.820	
Pg5 (MW)	21.427	21.301	21.325	25.424	25.540	25.588	
Pg8 (MW)	21.026	21.306	21.250	35.000	35.000	34.997	
Pg11(MW)	11.837	12.027	11.908	23.147	22.377	22.294	
Pg13(MW)	12.294	12.010	12.001	19.237	19.349	19.478	
Vg1 (pu)	1.096	1.100	1.100	1.090	1.100	1.100	
Vg2 (pu)	1.087	1.098	1.088	1.082	1.091	1.091	
Vg5 (nu)	1.065	1.061	1.062	1.059	1.069	1.070	
$Vg8$ (μ u)	1.070	1.071	1.070	1.071	1.078	1.078	
Vg11 (nu)	1.099	1.100	1.100	1.090	1.100	1.100	
Vg13 (nu)	1.092	1,100	1,100	1 090	1.100	1,100	
$\frac{7820}{76-9}$ (p.u)	0.975	0.983	0.982	1 100	0.988	0.979	
T6-10(n u)	0.961	0.950	0.950	1.098	0.950	0.951	
T4-12 (n u)	1 018	1 010	1 011	1.005	1 010	1 018	
$T_{7}^{-12}(p.u)$ $T_{7}^{-2}(p.u)$	0.974	0.967	0.968	1.005	0.973	0.972	
$\frac{12027(p.u)}{Ploss(MW)}$	8 001	8 01/	8 813	6.031	6.046	6.045	
$\frac{1033(1111)}{Cost[$/hr]}$	800.045	700 744	700 7/1	0.031 010 112	<u>0.040</u> <u>817 777</u>	<u>0.043</u> <u>917 749</u>	
Cost[\$/nr]	800.045	/99./44	/99./41	010.412	01/.///	01/./40	
Emission Cost[\$/hr]	0.368	0.368	0.368	0.270	0.271	0.271	
Total	1002 000	1002 700	1002 500	077.000	0((91(0((012	
Cost[\$/hr]	1002.900	1002.700	1002.500	900.980	900.810	900.812	
Alpha=0							
			Al	pha=0			
	BB	O-OPF	Al	pha=0 E-OPF	BBO/D	DE-OPF	
Pg1 (MW)	BB 6	O-OPF 8.056	Al D	pha=0 E-OPF 68.076	BBO/D 68.	DE-OPF 095	
Pg1 (MW) Pg2 (MW)	BB 6 7	O-OPF 8.056 0.901	Alj D	pha=0 E-OPF 68.076 70.867	BBO/D 68. 70.	DE-OPF 095 883	
Pg1 (MW) Pg2 (MW) Pg5 (MW)	BB 6 7 5	O-OPF 8.056 0.901 0.000		pha=0 E-OPF 68.076 70.867 50.000	BBO/D 68. 70. 49.	DE-OPF 095 883 999	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW)	BB 6 7 5 3	O-OPF 8.056 0.901 0.000 5.000		pha=0 E-OPF 68.076 70.867 50.000 34.100	BBO/D 68. 70. 49. 35.	DE-OPF 095 883 999 000	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW)	BB 6 7 5 3 3	O-OPF 8.056 0.901 0.000 5.000 0.000	Alj	pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000	BBO/D 68. 70. 49. 35. 30.	DE-OPF 095 883 999 000 000	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW)	BB 6 7 5 3 3 3 3	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817	Al	pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761	BBO/D 68. 70. 49. 35. 30. 32.	DE-OPF 095 883 999 000 000 725	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu)	BB 6 7 5 3 3 3 3	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 .090		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100	BBO/D 68. 70. 49. 35. 30. 32.	DE-OPF 095 883 999 000 000 725 100	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu)	BB 6 7 5 3 3 3 3	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0	DE-OPF 095 883 999 000 000 725 100 096	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu)	BB 6 7 5 3 3 3 3 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0	DE-OPF 095 883 999 000 000 725 100 096 078	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg8 (pu)	BB 6 7 5 3 3 3 3 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0	DE-OPF 095 883 999 000 000 725 100 096 078 085	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg8 (pu) Vg11 (pu)	BB 6 7 5 3 3 3 3 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0	DE-OPF 095 883 999 000 000 725 100 096 078 085 100	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg8 (pu) Vg11 (pu) Vg13 (pu)	BB 6 7 5 3 3 3 3 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.100 1.085 1.100 1.098	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.1 1.1	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 100	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg8 (pu) Vg11 (pu) Vg13 (pu) T6-9 (p.u)	BB 6 7 5 3 3 3 3 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 0.86		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 1.098 0.985	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.1 1.1 0.0	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 100 085	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg8 (pu) Vg11 (pu) Vg13 (pu) T6-9 (p.u) T6-10 (p.u)	BB 6 7 5 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 1.086 1.00		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 1.098 0.985 0.950	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.1 0.9 0.9	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 100 285 251	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg8 (pu) Vg11 (pu) Vg13 (pu) T6-9 (p.u) T6-10 (p.u) T4-12 (p.u)	BB 6 7 5 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 1.086 1.100 1.100		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 0.985 0.985 0.950 1.010	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.1 0.9 0.9 0.9	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 100 0985 051 012	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg8 (pu) Vg11 (pu) Vg13 (pu) T6-9 (p.u) T4-12 (p.u) T28-27(p u)	BB 6 7 5 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 1.086 1.100 1.100 1.00		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 0.985 0.985 0.950 1.010 0.977	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.0 1.1 1.1 0.9 0.9 0.9 1.0 0.9	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 100 085 051 012 076	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg5 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg5 (pu) Vg1 (pu) Vg13 (pu) T6-9 (p.u) T6-10 (p.u) T4-12 (p.u) T28-27(p.u) Ploss(MW)	BB 6 7 5 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 1.086 1.100		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 1.098 0.985 0.950 1.010 0.977 3.305	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.0 1.1 1.1 0.9 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 100 085 051 012 076 803	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg5 (pu) Vg7 (pu) Vg1 (pu) T6-9 (p.u) T6-10 (p.u) T28-27(p.u) Ploss(MW) Emission	BB 6 7 5 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 1.086 1.100 1.100 3.373		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 1.098 0.985 0.950 1.010 0.977 3.305	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.0 1.1 1.1 0.9 0.9 0.9 1.0 0.9 3.3	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 100 100 085 051 012 076 303	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg5 (pu) Vg1 (pu) T6-9 (p.u) T6-10 (p.u) T28-27(p.u) Ploss(MW) Emission Cost[\$/hr]	BB 6 7 5 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 1.086 1.100 1.100 1.100 3.373 33.616		pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 1.098 0.985 0.950 1.010 0.977 3.305	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 0985 951 012 976 303 .166	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg5 (pu) Vg1 (pu) Vg1 (pu) Vg5 (pu) Vg1 (pu) Vg1 (pu) Vg5 (pu) Vg1 (pu) Vg1 (pu) Vg13 (pu) T6-9 (p.u) T6-10 (p.u) T4-12 (p.u) T28-27(p.u) Ploss(MW) Emission Cost[\$/hr] Cost[\$/hr]	BB 6 7 5 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.062 1.090 1.086 1.100 1.100 1.100 3.373 33.616 0.217	Al) D	pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 1.098 0.985 0.950 1.010 0.977 3.305 33.219 0.217	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	DE-OPF 095 883 999 000 000 725 100 096 078 085 000 000 000 000 000 0265 051 012 076 303 .166	
Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11(MW) Pg13(MW) Vg1 (pu) Vg2 (pu) Vg5 (pu) Vg5 (pu) Vg1 (pu) Total	BB 6 7 5 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1	O-OPF 8.056 0.901 0.000 5.000 0.000 2.817 1.090 1.084 1.063 1.070 1.062 1.090 1.086 1.100 1.100 1.100 3.373 33.616 0.217 53.330	Alj D	pha=0 E-OPF 68.076 70.867 50.000 34.100 30.000 32.761 1.100 1.096 1.076 1.085 1.100 1.098 0.985 0.950 1.010 0.977 3.305 33.219 0.217	BBO/D 68. 70. 49. 35. 30. 32. 1.1 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0 0.9 0.9 1.0 0.9 3.3 933 0.2 105	DE-OPF 095 883 999 000 000 725 100 096 078 085 100 096 078 000 001 002 003 .166 217 32	

 Table 4 . Optimum generations for minimum total cost in three cases

Figure. 5 The convergence of fuel cost for alpha=1.

Figure. 6 Average and best solution of fuel cost of BBO/DE-OPF for alpha=1

Figure 5 show clearly that the convergence of fuel cost of BBO-DE/OPF is better than BBO-OPF and DE-OPF methods. For alpha=1: the cost of generation of BBO/DE-OPF at iteration 27 is 799,977 \$/hr lower than BBO-OPF and DE-OPF (801,062 and 800,637) \$/hr at the same iteration.

Figure 6 shows the typical convergence characteristics for the best solutions and the average solutions obtained for all generation. It can be seen that the convergence is fast for the proposed BBO/DE and the deviation is little between the best (799,741 \$/hr) and the average value (799,748 \$/hr) of the optimum.

B. Application on the Algerian network 114-bus

The BBO/DE-OPF has been also tested on the Algerian network 114 bus. It consists of 114 buses, 15 generators, 159 lines and 16 transformers. The slack bus is the bus N° 4 (Figure 7).

Figure 7. Topology of the Algerian network

The active power generating limits and the unit costs of all generators of the Algerian electrical network 114-bus are presented in Table 5 [7],

Table 5. Tower generation mints and cost coefficients for Argenan network (114 ous)							
hus	$Pg_{i(min)}$	Pg _{i(max)}	A_i	$B_i . 10^{-2}$	$C_i . 10^{-4}$		
bu b			(\$/h)	(\$/MWh)	$(%/MW^{2}h)$		
4	135,0000	1350,0000	0	1,5000	0,0085		
5	135,0000	1350,0000	0	1,5000	0,0085		
11	10,0000	100,0000	0	2,5000	0,0170		
15	30,0000	300,0000	0	2,5000	0,0170		
17	135,0000	1350,0000	0	1,5000	0,0085		
19	34,5000	345,0000	0	2,5000	0,0170		
22	34,5000	345,0000	0	2,5000	0,0170		
52	34,5000	345,0000	0	2,5000	0,0170		
80	34,5000	345,0000	0	2,5000	0,0170		
83	30,0000	300,0000	0	2,5000	0,0170		
98	30,0000	300,0000	0	2,5000	0,0170		
100	60,0000	600,0000	0	2,0000	0,0030		
101	20,0000	200,0000	0	2,0000	0,0030		
109	10,0000	100,0000	0	2,5000	0,0170		
111	10,0000	100,0000	0	2,5000	0,0170		

Table 5. Power generation limits and cost coefficients for Algerian network (114 bus)

The vector of control variables includes the generated active powers and magnitude voltages of generators.

Table 6 present the results of the generation cost, the emission level, total cost, generated active power, generated reactive power, magnitude voltage and power losses.

Table 6 and figure 8 confirm that the better cost value can be found by BBO/ DE method with 200 iterations which is 18673.2391\$/hr when compared with BBO-OPF (18871.2891 \$/hr) and DE-OPF (18739.1254 \$/hr). We can observe also that the power losses are reduced (83.787 MW) compared with (BBO-OPF : 92.215 MW and DE-OPF : 89.425 MW).

The results of the voltage magnitude and the angles of all buses are shown in figure (9) and figure (10) respectively.

	Min	BBO-OPF	DE-OPF	BBO/DE-OPF	Max
Pg4 (MW)	135	430.588	393.488	445.957	135
Pg5 (MW)	135	436.873	403.515	417.612	135
Pg11 (MW)	10	94.861	100.000	99.400	100
Pg15 (MW)	30	204.771	254.403	212.378	300
Pg17 (MW)	135	484.476	438.141	404.010	135
Pg19 (MW)	34.5	209.424	204.731	199.944	345
Pg22 (MW)	34.5	219.587	206.324	215.560	345
Pg52 (MW)	34.5	182.687	238.988	205.595	345
Pg80 (MW)	34.5	220.686	205.222	218.0633	345
Pg83 (MW)	30	179.121	226.727	203.540	300
Pg98 (MW)	30	176.376	152.015	192.639	300
Pg100(MW)	60	598.225	599.281	599.496	600
Pg101(MW)	20	188.578	199.699	199.765	200
Pg109(MW)	10	94.821	93.892	98.513	100
Pg111(MW)	10	98.144	100.000	98.315	100

Table 6 Results of minimal cost of 114 Algerian electrical network.

Vg4 (pu)	0.95	1.054	0.947	1.081	1.1
Vg5 (pu)	0.95	1.084	0.973	1.087	1.1
Vg11 (pu)	0.95	1.082	0.924	1.049	1.1
Vg15 (pu)	0.95	1.046	0.995	0.943	1.1
Vg17 (pu)	0.95	0.921	0.998	1.007	1.1
Vg19 pu)	0.95	1.070	0.941	1.090	1.1
Vg22 (pu)	0.95	0.914	1.050	0.977	1.1
Vg52 (pu)	0.95	1.047	1.046	1.037	1.1
Vg80 (pu)	0.95	1.025	0.964	0.996	1.1
Vg83 (pu)	0.95	1.057	1.062	0.919	1.1
Vg98 (pu)	0.95	1.007	0.981	1.035	1.1
Vg100(pu)	0.95	1.070	0.987	1.065	1.1
Vg101(pu)	0.95	0.968	1.082	0.996	1.1
Vg109(pu)	0.95	1.056	0.948	1.064	1.1
Vg111(pu)	0.95	0.929	0.955	1.075	1.1
Ploss(MW)	-	92.215	89.425	83.787	-
Cost[\$/hr]	-	18871.289	18739.125	18673.239	-

Figure 8. The convergence of fuel cost for the Algerian network

Figure 9. Voltage profile of all buses (pu) of the Algerian electrical network by the BBO/DE-based OPF

Figure 10. Voltage angles (°) of all buses of the Algerian network

Figure 9 and 10 shows that the results obtained with proposed approach BBO/DE-OPF are better than those obtained by BBO-OPF and DE-OPF for example at the bus 12 the value of the voltage magnitude obtained by DE-OPF is 0,797 pu but with BBO/DE-OPF is with the constraint limit with value 0,992 pu.

5. Conclusion

In this paper, a new stochastic optimization algorithm is a hybridization of biogeographybased optimization with differential evolution has been presented to solve the optimal power flow problem. The BBO/DE-OPF has been successfully implemented to solve optimal power flow problem for minimization of the total cost of the generation, the cost of pollution level control and the active power loss. The proposed method is tested on IEEE 30-bus system and the Algerian electrical network. Simulation results show that the solution of optimal power flow problem using a hybridization of biogeography-based optimization with differential evolution is able to minimize the total fuel cost along with minimization of power loss in the system, and it can converge faster than the others recent optimization methods.

6. References

[1] Hongye Wang, Carlos E. Murillo-Sanchez, Ray D. Zimmerman and Robert J. Thomas, "On Computational Issues of Market-Based Optimal Power Flow", IEEE Transactions on Power Systems, Vol. 22, No. 3, pp: 1185-1193, Aug 2007.

[2] J. Carpentier, "Contribution a l'étude du dispatching économique", Bulletin de la Société Française des Electriciens, vol. 3, pp. 431–447, Aug. 1962.

[3] Ruey-Hsun Liang, Sheng-Ren Tsai, Yie-Tone Chen, Wan-Tsun Tseng, "Optimal power flow by a fuzzy based hybrid particle swarm optimization approach", Electric Power Systems Research, Vol.81, 1466–1474, 2011

[4] D. Simon, "Biogeography-Based Optimization", IEEE Transaction on Evolutionary Computation, vol. 12, no. 6, December, pp. 702-713, 2008.

[5] Storn, R., & Price, K, Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces. A technical report TR-95-012. Berkeley, CA: International Computer Science Institute, 1995.

[6] Herbadji O, Bouktir T, " Optimal Power Flow Using Firefly Algorithm with Consideration of FACTS Devices "UPFC"", International Journal on Electrical Engineering and Informatics, Volume 7, Number 1, March 2015.

[7] Optimal Power Flow Solution of the Algerian Electrical Network using Differential Evolution Algorithm, L. Slimani, T. Bouktir, TELKOMNIKA Indonesian Journal of Electrical Engineering, , ISSN: 1693-6930, Vol.10, No.2, pp. 199-212, June 2012.

[8] O. Herbadji, L. Slimani and T. Bouktir. Biogeography-based optimisation approach for solving optimal power flow problem. Inter'l Journal of Hybrid Information Technology, 6(5):183-196, 2013.

[9] A. J. Wood and B.F. Wollenberg, "Power Generation, Operation and Control", 2nd Edition, John Wiley, 1996.

[10] Glenn W. Stagg, Ahmed H. El Abiad, "Computer methods in power systems analysis", McGraw-Hill, 1981.

[11] L. Slimani and T. Bouktir, "Economic Power Dispatch of Power System with Pollution Control using Multiobjective Ant Colony Optimization", International Journal of Computational Intelligence Research., ISSN 0973-1873 Vol.3, No.2, 145-153, 2007.

[12] B. Mahdad, T. Bouktir and K. Srairi, "OPF with Environmental Constraints with Multi Shunt Dynamic Controllers using Decomposed Parallel GA: Application to the Algerian Network", Journal of Electrical Engineering & Technology, Vol. 4, No.1, 55~65, 2009.

[13] T. Bouktir and M. Belkacemi, "Object-Oriented Optimal Power Flow", Electric Power Components and systems, Vol. 31, (6) 525-534, 2003.

[14] Bhattacharya A, and Chattopadhyay PK . Biogeography-based optimisation for different economic load dispatch problems. IEEE Trans. of Power Sys. 25(2), 1064-1077, 2010.

[15] Khokhar B, Parmar KPS and Dahiya S, Application of biogeography-based optimisation for economic dispatch problems. International Journal of Com. Appl. 47(13), 25-30; 2012.

[16] Nazari A and Hadidi A , Biogeography-based optimisation algorithm for economic load dispatch of power system. American Journal of Advanced Science Research, 1(3), 99-105, 2012.

[17] Santosh Kumar Moryal, Himmat Singh, Reactive Power Optimization Using Differential Evolution Algorithm, International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013.

[18] Aniruddha Bhattacharya, P.K. Chattopadhyay, Hybrid differential evolution with biogeographybased optimization algorithm for solution of economic emission load dispatch problems, Expert Systems with Applications, Vol. 38, pp. 14001–14010, 2011.

[19] Ren Zi-wu Zhu Qiu-guo, Hybrid Algorithm Based on Biogeography-based Optimization and Differential Evolution for Global Optimization, IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), 2014.

[20] T Bouktir, R Labdani and L. Slimani, "Economic power dispatch of power system with pollution control using multi-objective practical swarm optimization", journal of pure & applied sciences, vol4, N° 2 57-77, 2007.

[21] L Slimani, T Bouktir, "Optimal power flow using artificial bee colony with incorporation of FACTS devices: a case study", International review of electrical engineering, vol 6 N $^{\circ}$ 7, Paper Part B, December 2011.