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Many researchers have contributed to the development of a firm foundation for analysis and 
design of control applications in grid-connected renewable energy sources. This paper presents 
an intelligent control algorithm fond on artificial neural networks for active and reactive power 
controller in grid-connected photovoltaic generation system. The system is devices into two 
parts in which each part contains an inverter with control algorithm. A DC/DC converter in 
output voltage established by control magnitude besides maximum power point tracker algorithm 
always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can 
synchronize a sinusoidal current output with the grid voltage and accurate an independent 
active and reactive power control. Simulation results confirm the validation of the purpose. 
Neurocontroller based active and reactive power presents an efficiency control that guarantees 
good response to the steps changing in active and reactive power with an acceptable 
current/voltage synchronism. In this paper the power circuit and the control system of the 
presented grid-connected photovoltaic generation system is simulated and tested by 
MatLab/Simulink. 
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1. Introduction 

 

Solar photovoltaic (PV) generator is one of the most widely used renewable energy for 

produce electricity in industrial applications, that is essentially due to their; high reliability, 

relatively low cost, non-polluting, and modest maintenance requirements [1]-[2]. So, solar 

PV systems are an ideal renewable energy source. PV panels can be used either offline or 

online. In offline applications, PV panels supply local loads which can be residential or 

commercial. In online applications, these modules not only supply local loads, but also are 

connected to the utility grid. In the last case, the system would be called “grid-connected 

PV system”. Power inverters used to ensure the combination of grid with solar sources in 

which the generated DC power from PV modules converted to AC power provide to 

electric equipments. Inverter is therefore very important for grid connected photovoltaic 

systems. In grid connected solar inverter scheme, closed loops controls are traditionally 

implemented by fixed gain PID (proportional integral derivative) controllers [3-6]. 

Conventional PID control laws provide good results in case of linear systems with constant 

parameters. Moreover, these control laws are limited in robustness and effectiveness. 

However, in the control systems, the robustness is of particular importance. Recently, 

intelligent control acts are better than conventional controls. Artificial intelligent techniques 

classed on three big branches: fuzzy logic, neural network and evolutionally algorithms 

where the more popular used are genetic algorithms and particle swarm optimization. These 
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proceeds has exhibited particular superiorities and used widely in electrical control systems 

like electrical machines control and the integrations of grid-power sources. 

Artificial neural networks (ANNs) present an ideal solution for solving many problems 

in many applications of electrical systems as control, identification and classification. Many 

successes in the applications of this technique have been presented in the literature [7-9]. 

In this paper, an efficiency application of neural networks control to decoupling active 

and reactive power in grid-connected photovoltaic generation system is presented. After 

developing a reasonable model of the proposed power generation system under description 

analytic solutions, a decoupling control for active and reactive power via NN control 

algorithm is obtained. These greatly improve the design PV connected grid system quality. 

Simulation results using MatLab/Simulink verify the potential of the proposed intelligent 

control in grid connected-photovoltaic conversion system. 

2. System description 

 

The configuration of the proposed grid-connected PV generator system is depicted in 

Figure 1. The system connected with the utility power is mainly composed of photovoltaic 

power generation system and three phase grid. PV systems ensure the conversion of the 

solar energy into electrical power. Output voltage of the PV generator is not regular, which 

present a difficulty for the application. So, PV system does not provide the required output. 

Hence power converter is necessary to enable the no regular voltage of PV array to be used. 

DC/DC converter is used where PV array operates electrically at a certain voltage which 

corresponds to the maximum power point under different climatic conditions. To do this, 

various maximum power point tracking (MPPT) techniques have been proposed [10-13].   

A fairly simple maximum power point tracking algorithm called perturbation and 

observation (P&O) heavily used in solar energy systems. This method requires a few 

mathematical calculations [14]. For this reason, P&O was used in this particular work. A 

generate PWM signal based MPPT ensure the control of the DC/DC converter. A power 

conversion unit composed of DC/DC converter and DC/AC inverter grantee the transfer of 

the total generated power from the PV generator to the grid. A transformer steps up the 

alternative voltage to the nominal value of the grid. Another role of the transformer using is 

to providing electrical isolation between the DC part and the AC part of the system. The 

harmonics reduction inductor filter eliminates the harmonic components. 

 

 

 

 

 
 

 

 

 

 

Figure. 1: Structure of the proposed grid-connected PV generation system. 
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3. P/Q neurocontroller 

 
3.1 Presentation of ANN  

 

Principal of an artificial neural network estimate to the biological nervous system of the 

human brain and supply a mathematical application from an input space ℜ
n
 into an output 

space ℜ
m 

[15]. Its properties include function approximation, learning, generalization, 

classification, identification, control, etc. A neural network composed of many simple and 

similar processing elements that cool a processing unit, characterized by sets of inputs, 

outputs, biases, weights and a nonlinear transfer function. Nowadays, ANN applied to 

address some of the very practical control problems caused of their enormous parallelism 

and capability to learn any type of nonlinearity [16]-[17].  

The processing elements each have a number of interior parameters called weights. 

Changing the weights of an element will alter the behavior of the system. The aim here is 

choose the weights of the network to accomplish a desired input/output association. This 

procedure is known as training the network. The network can be considered memory less in 

the sense that, if one keeps the weights constant, the output vector depends only on the 

current input vector and in independent of past inputs [15].  ANN architecture performs a 

specific form of the adaptive control with the controller taking the form of a multi layer 

network and the adaptable parameters being distinct as the adaptable weights.  An artificial 

neural network stores the information concerning the problem in terms of weights of inter-

connections. The operation of determining the global process information called training.  

The Error Back Propagation method is one of the general approaches for training neural 

networks [18]. In this technique, model output error is passed through the plant, and 

updating law of the weights is accomplished. When this step is over, model performance is 

confirmed.  

 

 

 

  

 

 

 

 

 

Figure. 2: Simplified schematic of the ANN training process. 

 

3.2 Measurement, identification and calculation  

 

To apply the proposed intelligent control algorithm it is necessary to identify some 

parameters and to apply some transformations, measurement and calculation. So, to provide 

reference phase angle θ by using the phase locked loop (PLL) to obtain vd and vq voltage 

also the id and iq current grid with applying Park transformation and lastly, estimate the real 

active (P) and reactive (Q) power.  
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Measurement and calculation unit is illustrating in figure 2. The object is to senses the 

three phase inverter current ia, ib, and ic, the three phase inverter voltage va, vb, and vc, to 

calculate inverter voltage and to identify the active and the reactive power. 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure. 3: Measurement and calculation of θ, P and Q. 

P and Q in the dq plant obtained as follows: 

( )

( )









−=

+=

dqqd

dqqd

ivivQ

ivivP

2

3

2

3

                                                                                                      (1) 

Conventional mathematical-model-based analysis techniques and control methods 

require PID controllers applied in electrical systems control are very complex and limited in 

performances. In parallel the new technologies for renewable energy based inverters 

applications demands a good control performance.  

In the proposed system, a neurocontrol algorithm do not require any mathematical 

modelling of the system used to ensure a perform P/Q control in the grid connected PV 

generator with a relatively strong degree of one can be obtained considering proportionality 

to a linear combination of the errors of the state variables.  Therefore, we define P and Q 

errors, eP and eQ respectively, and so, the aim is to minimize the possible the active and the 

reactive power errors are given as: 
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3.3 Power grid neurocontroller model 

  

The proposed intelligent control aimed to maintaining the desired active and reactive 

power of the grid with their references. Considered for the neural controller output were the 

references current components in dq frame that would present an action intervention for 

hysteresis control inverter after transformation in real three phase reference farm and 

comparing with the real currents of grid. 

va 
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Although the system inverse model plays an important part in the theory of control, the 

achievement of its systematic form is pretty strenuous. Expecting that a dynamic system 

can be described by the differential equation: 

( ) ( ) ( ) ( ) ( )[ ]1,,1,...,1 +−+−=+ niUiUniYiYfiY                                                              (3) 

Where the system output Y(i+1) depends on the preceding n-output values, the system 

inverse model can be generally presented in the following form: 

( ) ( ) ( ) ( ) ( ) ( )[ ]1,,1...,,11
+−+−+=

− niUiUniYiYirfkU                                                    (4) 

Here Y(i+1) is an unknown value, and hence can be alternated by the output quantity 

desired value r(i+1). The simplest way to arrive at a system inverse NN model is it to train 

process to approximate the system inverse model. 

The Feed Forward Time-Delay Neural Network [19] architecture contains a set of delays 

at the input layer that allows retention of the evolution of the inputs in time, and enhances 

the ability of the NN for time series applications. The number of delays can be different for 

each input, which allows the network to pact with the differences in the time evolution of 

the inputs.  Figure 4 shows a diagram for the proposed intelligent control based ANN with 

two inputs, two delays for one input and one for the other input, two nonlinear neurons in 

the input layer and one linear neuron in the output layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4: Proposed neurocontroller of P and Q in grid connected-photovoltaic 

generation system based on hysteresis inverter. 
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4. Simulation results 

 

Table 1 summarizes the important required parameters of the PV generator and the 

utility grid with different accessories of the simulation model. At irradiation of 1000W/m
2 

and temperature of 25
0
C, solar array is generating 440V DC voltage. The generated DC 

voltage is converted to the grid using two-level DC/AC hysteresis inverter after filtrate 

using inductor filter. The switching frequency of the hysteresis inverter is 2kHz. 

 

 Table 1: Simulation parameters  

 Parameter Index Value Unite 

PV generator  Open-circuit voltage VOC 21.7 V 

 Voltage at the maximum power point Vmp 19.8 V 

 Short circuit current ISC 5 A 

 Current at the maximum power point Imp 3.28 A 

 Number of modulus in parallel NP 10 -- 

 Number of modulus in series NS 22 -- 

Grid  Grid Inductor Lg 10-5 H 

 Grid Resistor Rg 0.01 Ω 

 Max of active power grid PMax 10 KW 

 Max of reactive power grid QMax 1 KVAR 

 RMS phase Vg 380 V 

Filter Filter Inductor  Lf 0.002 H 

 

A digital simulation was carried out using MatLab Simulink interface for the proposed 

system and was run for 3s which show the results obtained for voltage and current 

waveforms, active and reactive powers on the AC side supplied to the grid. The maximum 

of active power injected in grid is 10kW and the maximum of reactive power is 1kVAR. 

For analyzing the performance of the grid connected solar system with the proposed 

intelligent active and reactive power controller various active power and reactive power 

injected into the grid for nine generation conditions selected all possibilities of active and 

reactive power variation in grid with percent for the maximum power injected by the 

photovoltaic generation system to the grid were the total injected power is absorbed by the 

load.  Nine steps of changes load are describes in table 2. 

 

Table 2: P and Q injected into the grid with 9 generation conditions 

t(s) 0→0.5 0.5→0.75 0.75→1 1→1.25 1.25→1.5 1.5→1.75 1.75→2.25 2.25→2.5 2.5→3 

P (%) 100 50 50 0 0 100 100 100 0 

Q (%) 0 0 50 50 100 100 50 0 0 

 

Figure 5 shows the output grid voltage of the phase “a” of the solar inverter before 

filtering and an enlarged waveform. For making the inverter output voltage into pure 

sinusoidal AC voltage an L filter is used. The numeric value of the filter inductance (Lf) is 

20mH. Figure 6 shows the solar inverter output of the three phase voltage after filtering 

with enlarged waveforms as well the phase “a” using the L filter. 
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Figure. 5: Zoom of inverter output voltage of phase “a” before filtering. 

 

 

 
Figure. 6: Inverter output voltage, enlarged waveform of inverter output voltage and 

enlarged waveform of the phase “a” after filtering. 
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Figure 7 show active and reactive power with their references that prove a good control 

performance. P and Q follows their references are done in table 2. As observed that, when P 

is reduced, the control is adjusted to increase Q. Hence, the values of inverter current 

(Figure 8) can get the rate values. Injected power from PV system to the grid devised into 

active and reactive power side grid presents a reasonable system response. Presented 

system receives the advantage of ability of the compensation of reactive power. Many 

enlarged waveforms of grid current illustrates by figure 9. It is clear that the grid current 

has a sinusoidal form varied with the active power variation but not an important influence 

with the reactive power variation. 

 

 
Figure. 7: Active and reactive power variation of grid. 

 
Figure. 8: Three phase inverter output current.  
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Figure. 9: Enlarged waveforms of inverter output current. 
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     Figure 10 shows the voltage and current of the active and reactive power neurocontroller 

for hysteresis inverter of the grid-connected PV generation system, the simulation is done 

under different active and reactive power steps changing. Load changed via different ladder 

signified all possibilities are varied as: 

•    Active power: from heavy to medium load; from medium to no load; from no load to 

heavy load; from heavy to no load. 

•   Reactive power: from no load to medium; from medium to heavy load; from heavy to 

medium load; from medium to no load. 

The results under different step load (active and reactive power) changes are given to 

examine the load variation effect. It is observed that a good synchronism of the output 

current and the grid voltage that more obvious via many zooms are done by figure 11.  

  
Figure. 10: Synchronism of inverter output current with grid voltage. 
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Figure. 11: Enlarged waveforms of inverter output current in phase with the grid voltage. 

 

5. Conclusion 

 

In this paper, performance analysis of grid-connected photovoltaic generator via 

hysteresis inverter using active and reactive power neurocontroller under load variation has 

been done. The proposed intelligent power grid control enabled the control independently 

of active and reactive power with the possibility of doing the compensation of the reactive 

power. Also, the proposed control system allows maintaining the output current 

approximately in phase with the utility voltage. 
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